 
  
    
      
        

          
          
          
            QPDF
              
          
              
                stable
              


  
    
    
    
  



        

              Contents:

	What is QPDF?
	License
	Downloading QPDF
	Building and Installing QPDF
	Notes for Packagers
	Running qpdf
	QDF Mode
	Using the QPDF Library
	Weak Cryptography
	qpdf JSON
	Contributing to qpdf
	Design and Library Notes
	QPDFJob: a Job-Based Interface	QPDFJob Design



	Linearization
	Object and Cross-Reference Streams
	PDF Encryption
	Release Notes
	Acknowledgments



        

      

    

    
          
          QPDF
      

      
        
          
  	
	QPDFJob: a Job-Based Interface
	
               Edit on GitHub
      


  



          
           
             
  
QPDFJob: a Job-Based Interface

All of the functionality from the qpdf command-line
executable is available from inside the C++ library using the
QPDFJob class. There are several ways to access this functionality:

	Command-line options

	Run the qpdf command line

	Use from the C++ API with QPDFJob::initializeFromArgv

	Use from the C API with qpdfjob_run_from_argv from
qpdfjob-c.h. If you are calling from a Windows-style main
and have an argv array of wchar_t, you can use
qpdfjob_run_from_wide_argv.




	The job JSON file format

	Use from the CLI with the --job-json-file parameter

	Use from the C++ API with QPDFJob::initializeFromJson

	Use from the C API with qpdfjob_run_from_json from qpdfjob-c.h

	Note: this is unrelated to --json but can be combined
with it. For more information on qpdf JSON (vs. QPDFJob JSON), see
qpdf JSON.




	The QPDFJob C++ API



If you can understand how to use the qpdf CLI, you can
understand the QPDFJob class and the JSON file. qpdf guarantees
that all of the above methods are in sync. Here’s how it works:

QPDFJob Interfaces	CLI
	JSON
	C++

	--some-option
	"someOption": ""
	config()->someOption()

	--some-option=value
	"someOption": "value"
	config()->someOption("value")

	positional argument
	"otherOption": "value"
	config()->otherOption("value")



In the JSON file, the JSON structure is an object (dictionary) whose
keys are command-line flags converted to camelCase. Positional
arguments have some corresponding key, which you can find by running
qpdf with the --job-json-help flag. For example, input
and output files are named by positional arguments on the CLI. In the
JSON, they appear in the "inputFile" and "outputFile" keys.
The following are equivalent:

	CLI:
	qpdf infile.pdf outfile.pdf \
   --pages . other.pdf --password=x 1-5 -- \
   --encrypt user owner 256 --print=low -- \
   --object-streams=generate






	Job JSON:
	{
  "inputFile": "infile.pdf",
  "outputFile": "outfile.pdf",
  "pages": [
    {
      "file": "."
    },
    {
      "file": "other.pdf",
      "password": "x",
      "range": "1-5"
    }
  ],
  "encrypt": {
    "userPassword": "user",
    "ownerPassword": "owner",
    "256bit": {
      "print": "low"
    }
  },
  "objectStreams": "generate"
}






	C++ code:
	#include <qpdf/QPDFJob.hh>
#include <qpdf/QPDFUsage.hh>
#include <iostream>

int main(int argc, char* argv[])
{
    try
    {
        QPDFJob j;
        j.config()
            ->inputFile("infile.pdf")
            ->outputFile("outfile.pdf")
            ->pages()
            ->pageSpec(".", "1-z")
            ->pageSpec("other.pdf", "1-5", "x")
            ->endPages()
            ->encrypt(256, "user", "owner")
            ->print("low")
            ->endEncrypt()
            ->objectStreams("generate")
            ->checkConfiguration();
        j.run();
    }
    catch (QPDFUsage& e)
    {
        std::cerr << "configuration error: " << e.what() << std::endl;
        return 2;
    }
    catch (std::exception& e)
    {
        std::cerr << "other error: " << e.what() << std::endl;
        return 2;
    }
    return 0;
}








Note the QPDFUsage exception above. This is thrown whenever a
configuration error occurs. These exactly correspond to usage messages
issued by the qpdf CLI for things like omitting an output
file, specifying –pages multiple times, or other invalid
combinations of options. QPDFUsage is thrown by the argv and JSON
interfaces as well as the native QPDFJob interface.

It is also possible to mix and match command-line options and JSON
from the CLI. For example, you could create a file called
my-options.json containing the following:

{
  "encrypt": {
    "userPassword": "",
    "ownerPassword": "owner",
    "256bit": {
    }
  },
  "objectStreams": "generate"
}





and use it with other options to create 256-bit encrypted (but
unrestricted) files with object streams while specifying other
parameters on the command line, such as

qpdf infile.pdf outfile.pdf --job-json-file=my-options.json





See also examples/qpdf-job.cc in the source distribution as
well as comments in QPDFJob.hh.


QPDFJob Design

This section describes some of the design rationale and history behind
QPDFJob.

Documentation of QPDFJob is divided among three places:

	“HOW TO ADD A COMMAND-LINE ARGUMENT” in README-maintainer
provides a quick reminder of how to add a command-line argument.

	The source file generate_auto_job has a detailed explanation
about how QPDFJob and generate_auto_job work together.

	This chapter of the manual has other details.



Prior to qpdf version 10.6.0, the qpdf CLI executable had a lot of
functionality built into it that was not callable from the library as
such. This created a number of problems:

	Some of the logic in qpdf.cc was pretty complex, such as
image optimization, generating JSON output, and many of the page
manipulations. While those things could all be coded using the C++
API, there would be a lot of duplicated code.

	Page splitting and merging will get more complicated over time as
qpdf supports a wider range of document-level options. It would be
nice to be able to expose this to library users instead of baking it
all into the CLI.

	Users of other languages who just wanted an interface to do things
that the CLI could do didn’t have a good way to do it, such as just
handing a library call a set of command-line options or an
equivalent JSON object that could be passed in as a string.

	The qpdf CLI itself was almost 8,000 lines of code. It needed to be
refactored, cleaned up, and split.

	Exposing a new feature via the command-line required making lots of
small edits to lots of small bits of code, and it was easy to forget
something. Adding a code generator, while complex in some ways,
greatly reduces the chances of error when extending qpdf.



Here are a few notes on some design decisions about QPDFJob and its
various interfaces.

	Bare command-line options (flags with no parameter) map to config
functions that take no options and to JSON keys whose values are
required to be the empty string. The rationale is that we can later
change these bare options to options that take an optional parameter
without breaking backward compatibility in the CLI or the JSON.
Options that take optional parameters generate two config functions:
one has no arguments, and one that has a char const* argument.
This means that adding an optional parameter to a previously bare
option also doesn’t break binary compatibility.

	Adding a new argument to job.yml automatically triggers
almost everything by declaring and referencing things that you have
to implement. This way, once you get the code to compile and link,
you know you haven’t forgotten anything. There are two tricky cases:

	If an argument handler has to do something special, like call a
nested config method or select an option table, you have to
implement it manually. This is discussed in
generate_auto_job.

	When you add an option that has optional parameters or choices,
both of the handlers described above are declared, but only the
one that takes an argument is referenced. You have to remember to
implement the one that doesn’t take an argument or else people
will get a linker error if they try to call it. The assumption is
that things with optional parameters started out as bare, so the
argument-less version is already there.




	If you have to add a new option that requires its own option table,
you will have to do some extra work including adding a new nested
Config class, adding a config member variable to ArgParser in
QPDFJob_argv.cc and Handlers in QPDFJob_json.cc,
and make sure that manually implemented handlers are consistent with
each other. It is best to add explicit test cases for all the
various ways to get to the option.







           

          

          
         Previous
        Next 
    


  


  
    © Copyright 2005-2024, Jay Berkenbilt.
      Revision 3b97c9bd.
      

  


  Built with Sphinx using a
    theme
    provided by Read the Docs.
   


        

      

    
  

  

  
    
       Read the Docs
      v: stable
      
    
    
      	Versions
	latest
	stable
	11.9
	11.8
	11.7
	11.6
	11.5
	11.4
	11.3
	11.2
	11.1
	11.0
	10.6
	10.5
	doc-check


      	Downloads
	pdf
	html
	epub


      	On Read the Docs
	
            Project Home
          
	
            Builds
          


    

  

 

