

 QPDF

 11.6

 Contents:

	What is QPDF?
	License
	Downloading QPDF
	Building and Installing QPDF
	Notes for Packagers
	Running qpdf
	QDF Mode
	Using the QPDF Library
	Weak Cryptography
	qpdf JSON
	Contributing to qpdf
	Design and Library Notes	Introduction
	Design Goals
	Helper Classes
	Implementation Notes
	QPDF Object Internals	Object Internals
	Objects in qpdf 11 and Newer
	Objects prior to qpdf 11

	Casting Policy
	Encryption
	Random Number Generation
	Adding and Removing Pages
	Reserving Object Numbers
	Copying Objects From Other PDF Files
	Writing PDF Files
	Filtered Streams
	Object Accessor Methods
	Smart Pointers	Transitional Enhancements to PointerHolder
	Differences between PointerHolder and std::shared_ptr
	Addressing the Differences
	Historical Background

	QPDFJob: a Job-Based Interface
	Linearization
	Object and Cross-Reference Streams
	PDF Encryption
	Release Notes
	Acknowledgments

 QPDF

 	
	Design and Library Notes
	
 Edit on GitHub

Design and Library Notes

Introduction

This section was written prior to the implementation of the qpdf
library and was subsequently modified to reflect the implementation.
In some cases, for purposes of explanation, it may differ slightly
from the actual implementation. As always, the source code and test
suite are authoritative. Even if there are some errors, this document
should serve as a road map to understanding how this code works.

In general, one should adhere strictly to a specification when writing
but be liberal in reading. This way, the product of our software will
be accepted by the widest range of other programs, and we will accept
the widest range of input files. This library attempts to conform to
that philosophy whenever possible but also aims to provide strict
checking for people who want to validate PDF files. If you don’t want
to see warnings and are trying to write something that is tolerant,
you can call setSuppressWarnings(true). If you want to fail on the
first error, you can call setAttemptRecovery(false). The default
behavior is to generating warnings for recoverable problems. Note that
recovery will not always produce the desired results even if it is
able to get through the file. Unlike most other PDF files that produce
generic warnings such as “This file is damaged,” qpdf generally issues
a detailed error message that would be most useful to a PDF developer.
This is by design as there seems to be a shortage of PDF validation
tools out there. This was, in fact, one of the major motivations
behind the initial creation of qpdf. That said, qpdf is not a strict
PDF checker. There are many ways in which a PDF file can be out of
conformance to the spec that qpdf doesn’t notice or report.

Design Goals

The qpdf library includes support for reading and rewriting PDF files.
It aims to hide from the user details involving object locations,
modified (appended) PDF files, use of object streams, and stream
filters including encryption. It does not aim to hide knowledge of the
object hierarchy or content stream contents. Put another way, a user
of the qpdf library is expected to have knowledge about how PDF files
work, but is not expected to have to keep track of bookkeeping details
such as file positions.

When accessing objects, a user of the library never has to care
whether an object is direct or indirect as all access to objects deals
with this transparently. All memory management details are also
handled by the library. When modifying objects, it is possible to
determine whether an object is indirect and to make copies of the
object if needed.

Memory is managed mostly with std::shared_ptr object to minimize
explicit memory handling. This library also makes use of a technique
for giving fine-grained access to methods in one class to other
classes by using public subclasses with friends and only private
members that in turn call private methods of the containing class. See
QPDFObjectHandle::Factory as an example.

The top-level qpdf class is QPDF. A QPDF object represents a PDF
file. The library provides methods for both accessing and mutating PDF
files.

The primary class for interacting with PDF objects is
QPDFObjectHandle. Instances of this class can be passed around by
value, copied, stored in containers, etc. with very low overhead. The
QPDFObjectHandle object contains an internal shared pointer to the
underlying object. Instances of QPDFObjectHandle created by
reading from a file will always contain a reference back to the
QPDF object from which they were created. A QPDFObjectHandle
may be direct or indirect. If indirect, object is initially
unresolved. In this case, the first attempt to access the underlying
object will result in the object being resolved via a call to the
referenced QPDF instance. This makes it essentially impossible to
make coding errors in which certain things will work for some PDF
files and not for others based on which objects are direct and which
objects are indirect. In cases where it is necessary to know whether
an object is indirect or not, this information can be obtained from
the QPDFObjectHandle. It is also possible to convert direct
objects to indirect objects and vice versa.

Instances of QPDFObjectHandle can be directly created and modified
using static factory methods in the QPDFObjectHandle class. There
are factory methods for each type of object as well as a convenience
method QPDFObjectHandle::parse that creates an object from a
string representation of the object. The _qpdf user-defined string
literal is also available, making it possible to create instances of
QPDFObjectHandle with "(pdf-syntax)"_qpdf. Existing instances
of QPDFObjectHandle can also be modified in several ways. See
comments in QPDFObjectHandle.hh for details.

An instance of QPDF is constructed by using the class’s default
constructor or with QPDF::create(). If desired, the QPDF
object may be configured with various methods that change its default
behavior. Then the QPDF::processFile method is passed the name of
a PDF file, which permanently associates the file with that QPDF
object. A password may also be given for access to password-protected
files. QPDF does not enforce encryption parameters and will treat
user and owner passwords equivalently. Either password may be used to
access an encrypted file. QPDF will allow recovery of a user
password given an owner password. The input PDF file must be seekable.
Output files written by QPDFWriter need not be seekable, even when
creating linearized files. During construction, QPDF validates the
PDF file’s header, and then reads the cross reference tables and
trailer dictionaries. The QPDF class keeps only the first trailer
dictionary though it does read all of them so it can check the
/Prev key. QPDF class users may request the root object and
the trailer dictionary specifically. The cross reference table is kept
private. Objects may then be requested by number or by walking the
object tree.

When a PDF file has a cross-reference stream instead of a
cross-reference table and trailer, requesting the document’s trailer
dictionary returns the stream dictionary from the cross-reference stream
instead.

There are some convenience routines for very common operations such as
walking the page tree and returning a vector of all page objects. For
full details, please see the header files
QPDF.hh and
QPDFObjectHandle.hh. There are also some
additional helper classes that provide higher level API functions for
certain document constructions. These are discussed in Helper Classes.

Helper Classes

QPDF version 8.1 introduced the concept of helper classes. Helper
classes are intended to contain higher level APIs that allow developers
to work with certain document constructs at an abstraction level above
that of QPDFObjectHandle while staying true to qpdf’s philosophy of
not hiding document structure from the developer. As with qpdf in
general, the goal is to take away some of the more tedious bookkeeping
aspects of working with PDF files, not to remove the need for the
developer to understand how the PDF construction in question works. The
driving factor behind the creation of helper classes was to allow the
evolution of higher level interfaces in qpdf without polluting the
interfaces of the main top-level classes QPDF and
QPDFObjectHandle.

There are two kinds of helper classes: document helpers and object
helpers. Document helpers are constructed with a reference to a QPDF
object and provide methods for working with structures that are at the
document level. Object helpers are constructed with an instance of a
QPDFObjectHandle and provide methods for working with specific types
of objects.

Examples of document helpers include QPDFPageDocumentHelper, which
contains methods for operating on the document’s page trees, such as
enumerating all pages of a document and adding and removing pages; and
QPDFAcroFormDocumentHelper, which contains document-level methods
related to interactive forms, such as enumerating form fields and
creating mappings between form fields and annotations.

Examples of object helpers include QPDFPageObjectHelper for
performing operations on pages such as page rotation and some operations
on content streams, QPDFFormFieldObjectHelper for performing
operations related to interactive form fields, and
QPDFAnnotationObjectHelper for working with annotations.

It is always possible to retrieve the underlying QPDF reference from
a document helper and the underlying QPDFObjectHandle reference from
an object helper. Helpers are designed to be helpers, not wrappers. The
intention is that, in general, it is safe to freely intermix operations
that use helpers with operations that use the underlying objects.
Document and object helpers do not attempt to provide a complete
interface for working with the things they are helping with, nor do they
attempt to encapsulate underlying structures. They just provide a few
methods to help with error-prone, repetitive, or complex tasks. In some
cases, a helper object may cache some information that is expensive to
gather. In such cases, the helper classes are implemented so that their
own methods keep the cache consistent, and the header file will provide
a method to invalidate the cache and a description of what kinds of
operations would make the cache invalid. If in doubt, you can always
discard a helper class and create a new one with the same underlying
objects, which will ensure that you have discarded any stale
information.

By Convention, document helpers are called
QPDFSomethingDocumentHelper and are derived from
QPDFDocumentHelper, and object helpers are called
QPDFSomethingObjectHelper and are derived from QPDFObjectHelper.
For details on specific helpers, please see their header files. You can
find them by looking at
include/qpdf/QPDF*DocumentHelper.hh and
include/qpdf/QPDF*ObjectHelper.hh.

In order to avoid creation of circular dependencies, the following
general guidelines are followed with helper classes:

	Core class interfaces do not know about helper classes. For example,
no methods of QPDF or QPDFObjectHandle will include helper
classes in their interfaces.

	Interfaces of object helpers will usually not use document helpers in
their interfaces. This is because it is much more useful for document
helpers to have methods that return object helpers. Most operations
in PDF files start at the document level and go from there to the
object level rather than the other way around. It can sometimes be
useful to map back from object-level structures to document-level
structures. If there is a desire to do this, it will generally be
provided by a method in the document helper class.

	Most of the time, object helpers don’t know about other object
helpers. However, in some cases, one type of object may be a
container for another type of object, in which case it may make sense
for the outer object to know about the inner object. For example,
there are methods in the QPDFPageObjectHelper that know
QPDFAnnotationObjectHelper because references to annotations are
contained in page dictionaries.

	Any helper or core library class may use helpers in their
implementations.

Prior to qpdf version 8.1, higher level interfaces were added as
“convenience functions” in either QPDF or QPDFObjectHandle. For
compatibility, older convenience functions for operating with pages will
remain in those classes even as alternatives are provided in helper
classes. Going forward, new higher level interfaces will be provided
using helper classes.

Implementation Notes

This section contains a few notes about QPDF’s internal implementation,
particularly around what it does when it first processes a file. This
section is a bit of a simplification of what it actually does, but it
could serve as a starting point to someone trying to understand the
implementation. There is nothing in this section that you need to know
to use the qpdf library.

In a PDF file, objects may be direct or indirect. Direct objects are
objects whose representations appear directly in PDF syntax. Indirect
objects are references to objects by their ID. The qpdf library uses
the QPDFObjectHandle type to hold onto objects and to abstract
away in most cases whether the object is direct or indirect.

Internally, QPDFObjectHandle holds onto a shared pointer to the
underlying object value. When a direct object is created
programmatically by client code (rather than being read from the
file), the QPDFObjectHandle that holds it is not associated with a
QPDF object. When an indirect object reference is created, it
starts off in an unresolved state and must be associated with a
QPDF object, which is considered its owner. To access the actual
value of the object, the object must be resolved. This happens
automatically when the the object is accessed in any way.

To resolve an object, qpdf checks its object cache. If not found in
the cache, it attempts to read the object from the input source
associated with the QPDF object. If it is not found, a null
object is returned. A null object is an object type, just like
boolean, string, number, etc. It is not a null pointer. The PDF
specification states that an indirect reference to an object that
doesn’t exist is to be treated as a null. The resulting object,
whether a null or the actual object that was read, is stored in
the cache. If the object is later replaced or swapped, the underlying
object remains the same, but its value is replaced. This way, if you
have a QPDFObjectHandle to an indirect object and the object by
that number is replaced (by calling QPDF::replaceObject or
QPDF::swapObjects), your QPDFObjectHandle will reflect the new
value of the object. This is consistent with what would happen to PDF
objects if you were to replace the definition of an object in the
file.

When reading an object from the input source, if the requested object
is inside of an object stream, the object stream itself is first read
into memory. Then the tokenizer reads objects from the memory stream
based on the offset information stored in the stream. Those individual
objects are cached, after which the temporary buffer holding the
object stream contents is discarded. In this way, the first time an
object in an object stream is requested, all objects in the stream are
cached.

The following example should clarify how QPDF processes a simple
file.

	Client constructs QPDF pdf and calls
pdf.processFile("a.pdf");.

	The QPDF class checks the beginning of
a.pdf for a PDF header. It then reads the
cross reference table mentioned at the end of the file, ensuring that
it is looking before the last %%EOF. After getting to trailer
keyword, it invokes the parser.

	The parser sees <<, so it changes state and starts accumulating
the keys and values of the dictionary.

	In dictionary creation mode, the parser keeps accumulating objects
until it encounters >>. Each object that is read is pushed onto
a stack. If R is read, the last two objects on the stack are
inspected. If they are integers, they are popped off the stack and
their values are used to obtain an indirect object handle from the
QPDF class. The QPDF class consults its cache, and if
necessary, inserts a new unresolved object, and returns an object
handle pointing to the cache entry, which is then pushed onto the
stack. When >> is finally read, the stack is converted into a
QPDF_Dictionary (not directly accessible through the API) which
is placed in a QPDFObjectHandle and returned.

	The resulting dictionary is saved as the trailer dictionary.

	The /Prev key is searched. If present, QPDF seeks to that
point and repeats except that the new trailer dictionary is not
saved. If /Prev is not present, the initial parsing process is
complete.

	If there is an encryption dictionary, the document’s encryption
parameters are initialized.

	The client requests the root object by getting the value of the
/Root key from trailer dictionary and returns it. It is an
unresolved indirect QPDFObjectHandle.

	The client requests the /Pages key from root
QPDFObjectHandle. The QPDFObjectHandle notices that it is an
unresolved indirect object, so it asks QPDF to resolve it.
QPDF checks the cross reference table, gets the offset, and
reads the object present at that offset. The object cache entry’s
unresolved value is replaced by the actual value, which causes
any previously unresolved QPDFObjectHandle objects that pointed
there to now have a shared copy of the actual object. Modifications
through any such QPDFObjectHandle will be reflected in all of
them. As the client continues to request objects, the same process
is followed for each new requested object.

QPDF Object Internals

The internals of QPDFObjectHandle and how qpdf stores objects were
significantly rewritten for QPDF 11. Here are some additional details.

Object Internals

The QPDF object has an object cache which contains a shared
pointer to each object that was read from the file or added as an
indirect object. Changes can be made to any of those objects through
QPDFObjectHandle methods. Any such changes are visible to all
QPDFObjectHandle instances that point to the same object. When a
QPDF object is written by QPDFWriter or serialized to JSON,
any changes are reflected.

Objects in qpdf 11 and Newer

The object cache in QPDF contains a shared pointer to
QPDFObject. Any QPDFObjectHandle resolved from an indirect
reference to that object has a copy of that shared pointer. Each
QPDFObject object contains a shared pointer to an object of type
QPDFValue. The QPDFValue type is an abstract base class. There
is an implementation for each of the basic object types (array,
dictionary, null, boolean, string, number, etc.) as well as a few
special ones including uninitialized, unresolved,
reserved, and destroyed. When an object is first created,
its underlying QPDFValue has type unresolved. When the object
is first accessed, the QPDFObject in the cache has its internal
QPDFValue replaced with the object as read from the file. Since it
is the QPDFObject object that is shared by all referencing
QPDFObjectHandle objects as well as by the owning QPDF object,
this ensures that any future changes to the object, including
replacing the object with a completely different one by calling
QPDF::replaceObject or QPDF::swapObjects, will be
reflected across all QPDFObjectHandle objects that reference it.

A QPDFValue that originated from a PDF input source maintains a
pointer to the QPDF object that read it (its owner). When that
QPDF object is destroyed, it disconnects all objects reachable
from it by clearing their owner. For indirect objects (all objects in
the object cache), it also replaces the object’s value with an object
of type destroyed. This means that, if there are still any
referencing QPDFObjectHandle objects floating around, requesting
their owning QPDF will return a null pointer rather than a pointer
to a QPDF object that is either invalid or points to something
else, and any attempt to access an indirect object that is associated
with a destroyed QPDF object will throw an exception. This
operation also has the effect of breaking any circular references
(which are common and, in some cases, required by the PDF
specification), thus preventing memory leaks when QPDF objects are
destroyed.

Objects prior to qpdf 11

Prior to qpdf 11, the functionality of the QPDFValue and
QPDFObject classes were contained in a single QPDFObject
class, which served the dual purpose of being the cache entry for
QPDF and being the abstract base class for all the different PDF
object types. The behavior was nearly the same, but there were some
problems:

	While changes to a QPDFObjectHandle through mutation were
visible across all referencing QPDFObjectHandle objects,
replacing an object with QPDF::replaceObject or
QPDF::swapObjects would leave QPDF with no way of notifying
QPDFObjectHandle objects that pointed to the old QPDFObject.
To work around this, every attempt to access the underlying object
that a QPDFObjectHandle pointed to had to ask the owning
QPDF whether the object had changed, and if so, it had to
replace its internal QPDFObject pointer. This added overhead to
every indirect object access even if no objects were ever changed.

	When a QPDF object was destroyed, any QPDFObjectHandle
objects that referenced it would maintain a potentially invalid
pointer as the owning QPDF. In practice, this wasn’t usually a
problem since generally people would have no need to maintain copies
of a QPDFObjectHandle from a destroyed QPDF object, but
in cases where this was possible, it was necessary for other
software to do its own bookkeeping to ensure that an object’s owner
was still valid.

These problems were solved by splitting QPDFObject into
QPDFObject and QPDFValue.

Casting Policy

This section describes the casting policy followed by qpdf’s
implementation. This is no concern to qpdf’s end users and largely of no
concern to people writing code that uses qpdf, but it could be of
interest to people who are porting qpdf to a new platform or who are
making modifications to the code.

The C++ code in qpdf is free of old-style casts except where unavoidable
(e.g. where the old-style cast is in a macro provided by a third-party
header file). When there is a need for a cast, it is handled, in order
of preference, by rewriting the code to avoid the need for a cast,
calling const_cast, calling static_cast, calling
reinterpret_cast, or calling some combination of the above. As a
last resort, a compiler-specific #pragma may be used to suppress a
warning that we don’t want to fix. Examples may include suppressing
warnings about the use of old-style casts in code that is shared between
C and C++ code.

The QIntC namespace, provided by
include/qpdf/QIntC.hh, implements safe
functions for converting between integer types. These functions do range
checking and throw a std::range_error, which is subclass of
std::runtime_error, if conversion from one integer type to another
results in loss of information. There are many cases in which we have to
move between different integer types because of incompatible integer
types used in interoperable interfaces. Some are unavoidable, such as
moving between sizes and offsets, and others are there because of old
code that is too in entrenched to be fixable without breaking source
compatibility and causing pain for users. QPDF is compiled with extra
warnings to detect conversions with potential data loss, and all such
cases should be fixed by either using a function from QIntC or a
static_cast.

When the intention is just to switch the type because of exchanging data
between incompatible interfaces, use QIntC. This is the usual case.
However, there are some cases in which we are explicitly intending to
use the exact same bit pattern with a different type. This is most
common when switching between signed and unsigned characters. A lot of
qpdf’s code uses unsigned characters internally, but std::string and
char are signed. Using QIntC::to_char would be wrong for
converting from unsigned to signed characters because a negative
char value and the corresponding unsigned char value greater
than 127 mean the same thing. There are also
cases in which we use static_cast when working with bit fields where
we are not representing a numerical value but rather a bunch of bits
packed together in some integer type. Also note that size_t and
long both typically differ between 32-bit and 64-bit environments,
so sometimes an explicit cast may not be needed to avoid warnings on one
platform but may be needed on another. A conversion with QIntC
should always be used when the types are different even if the
underlying size is the same. QPDF’s automatic build builds on 32-bit
and 64-bit platforms, and the test suite is very thorough, so it is
hard to make any of the potential errors here without being caught in
build or test.

Encryption

Encryption is supported transparently by qpdf. When opening a PDF file,
if an encryption dictionary exists, the QPDF object processes this
dictionary using the password (if any) provided. The primary decryption
key is computed and cached. No further access is made to the encryption
dictionary after that time. When an object is read from a file, the
object ID and generation of the object in which it is contained is
always known. Using this information along with the stored encryption
key, all stream and string objects are transparently decrypted. Raw
encrypted objects are never stored in memory. This way, nothing in the
library ever has to know or care whether it is reading an encrypted
file.

An interface is also provided for writing encrypted streams and strings
given an encryption key. This is used by QPDFWriter when it rewrites
encrypted files.

When copying encrypted files, unless otherwise directed, qpdf will
preserve any encryption in effect in the original file. qpdf can do
this with either the user or the owner password. There is no
difference in capability based on which password is used. When 40 or
128 bit encryption keys are used, the user password can be recovered
with the owner password. With 256 keys, the user and owner passwords
are used independently to encrypt the actual encryption key, so while
either can be used, the owner password can no longer be used to
recover the user password.

Starting with version 4.0.0, qpdf can read files that are not encrypted
but that contain encrypted attachments, but it cannot write such files.
qpdf also requires the password to be specified in order to open the
file, not just to extract attachments, since once the file is open, all
decryption is handled transparently. When copying files like this while
preserving encryption, qpdf will apply the file’s encryption to
everything in the file, not just to the attachments. When decrypting the
file, qpdf will decrypt the attachments. In general, when copying PDF
files with multiple encryption formats, qpdf will choose the newest
format. The only exception to this is that clear-text metadata will be
preserved as clear-text if it is that way in the original file.

One point of confusion some people have about encrypted PDF files is
that encryption is not the same as password protection.
Password-protected files are always encrypted, but it is also possible
to create encrypted files that do not have passwords. Internally, such
files use the empty string as a password, and most readers try the
empty string first to see if it works and prompt for a password only
if the empty string doesn’t work. Normally such files have an empty
user password and a non-empty owner password. In that way, if the file
is opened by an ordinary reader without specification of password, the
restrictions specified in the encryption dictionary can be enforced.
Most users wouldn’t even realize such a file was encrypted. Since qpdf
always ignores the restrictions (except for the purpose of reporting
what they are), qpdf doesn’t care which password you use. QPDF will
allow you to create PDF files with non-empty user passwords and empty
owner passwords. Some readers will require a password when you open
these files, and others will open the files without a password and not
enforce restrictions. Having a non-empty user password and an empty
owner password doesn’t really make sense because it would mean that
opening the file with the user password would be more restrictive than
not supplying a password at all. QPDF also allows you to create PDF
files with the same password as both the user and owner password. Some
readers will not ever allow such files to be accessed without
restrictions because they never try the password as the owner password
if it works as the user password. Nonetheless, one of the powerful
aspects of qpdf is that it allows you to finely specify the way
encrypted files are created, even if the results are not useful to
some readers. One use case for this would be for testing a PDF reader
to ensure that it handles odd configurations of input files. If you
attempt to create an encrypted file that is not secure, qpdf will warn
you and require you to explicitly state your intention to create an
insecure file. So while qpdf can create insecure files, it won’t let
you do it by mistake.

Random Number Generation

QPDF generates random numbers to support generation of encrypted data.
Starting in qpdf 10.0.0, qpdf uses the crypto provider as its source of
random numbers. Older versions used the OS-provided source of secure
random numbers or, if allowed at build time, insecure random numbers
from stdlib. Starting with version 5.1.0, you can disable use of
OS-provided secure random numbers at build time. This is especially
useful on Windows if you want to avoid a dependency on Microsoft’s
cryptography API. You can also supply your own random data provider. For
details on how to do this, please refer to the top-level README.md file
in the source distribution and to comments in
QUtil.hh.

Adding and Removing Pages

While qpdf’s API has supported adding and modifying objects for some
time, version 3.0 introduces specific methods for adding and removing
pages. These are largely convenience routines that handle two tricky
issues: pushing inheritable resources from the /Pages tree down to
individual pages and manipulation of the /Pages tree itself. For
details, see addPage and surrounding methods in
QPDF.hh.

Reserving Object Numbers

Version 3.0 of qpdf introduced the concept of reserved objects. These
are seldom needed for ordinary operations, but there are cases in which
you may want to add a series of indirect objects with references to each
other to a QPDF object. This causes a problem because you can’t
determine the object ID that a new indirect object will have until you
add it to the QPDF object with QPDF::makeIndirectObject. The
only way to add two mutually referential objects to a QPDF object
prior to version 3.0 would be to add the new objects first and then make
them refer to each other after adding them. Now it is possible to create
a reserved object using
QPDFObjectHandle::newReserved. This is an indirect object that stays
“unresolved” even if it is queried for its type. So now, if you want to
create a set of mutually referential objects, you can create
reservations for each one of them and use those reservations to
construct the references. When finished, you can call
QPDF::replaceReserved to replace the reserved objects with the real
ones. This functionality will never be needed by most applications, but
it is used internally by QPDF when copying objects from other PDF files,
as discussed in Copying Objects From Other PDF Files. For an example of how to use reserved
objects, search for newReserved in
test_driver.cc in qpdf’s sources.

Copying Objects From Other PDF Files

Version 3.0 of qpdf introduced the ability to copy objects into a
QPDF object from a different QPDF object, which we refer to as
foreign objects. This allows arbitrary merging of PDF files. The
qpdf command-line tool provides limited support for basic
page selection, including merging in pages from other files, but the
library’s API makes it possible to implement arbitrarily complex
merging operations. The main method for copying foreign objects is
QPDF::copyForeignObject. This takes an indirect object from
another QPDF and copies it recursively into this object while
preserving all object structure, including circular references. This
means you can add a direct object that you create from scratch to a
QPDF object with QPDF::makeIndirectObject, and you can add an
indirect object from another file with QPDF::copyForeignObject.
The fact that QPDF::makeIndirectObject does not automatically
detect a foreign object and copy it is an explicit design decision.
Copying a foreign object seems like a sufficiently significant thing
to do that it should be done explicitly.

The other way to copy foreign objects is by passing a page from one
QPDF to another by calling QPDF::addPage. In contrast to
QPDF::makeIndirectObject, this method automatically distinguishes
between indirect objects in the current file, foreign objects, and
direct objects.

When you copy objects from one QPDF to another, the input source
of the original file must remain valid until you have finished with the
destination object. This is because the input source is still used
to retrieve any referenced stream data from the copied object. If
needed, there are methods to force the data to be copied. See comments
near the declaration of copyForeignObject in
include/qpdf/QPDF.hh for details.

Writing PDF Files

The qpdf library supports file writing of QPDF objects to PDF
files through the QPDFWriter class. The QPDFWriter class has
two writing modes: one for non-linearized files, and one for
linearized files. See Linearization for a description of
linearization is implemented. This section describes how we write
non-linearized files including the creation of QDF files (see
QDF Mode).

This outline was written prior to implementation and is not exactly
accurate, but it portrays the essence of how writing works. Look at
the code in QPDFWriter for exact details.

	Initialize state:

	next object number = 1

	object queue = empty

	renumber table: old object id/generation to new id/0 = empty

	xref table: new id -> offset = empty

	Create a QPDF object from a file.

	Write header for new PDF file.

	Request the trailer dictionary.

	For each value that is an indirect object, grab the next object
number (via an operation that returns and increments the number). Map
object to new number in renumber table. Push object onto queue.

	While there are more objects on the queue:

	Pop queue.

	Look up object’s new number n in the renumbering table.

	Store current offset into xref table.

	Write :samp:`{n}` 0 obj.

	If object is null, whether direct or indirect, write out null,
thus eliminating unresolvable indirect object references.

	If the object is a stream stream, write stream contents, piped
through any filters as required, to a memory buffer. Use this
buffer to determine the stream length.

	If object is not a stream, array, or dictionary, write out its
contents.

	If object is an array or dictionary (including stream), traverse
its elements (for array) or values (for dictionaries), handling
recursive dictionaries and arrays, looking for indirect objects.
When an indirect object is found, if it is not resolvable, ignore.
(This case is handled when writing it out.) Otherwise, look it up
in the renumbering table. If not found, grab the next available
object number, assign to the referenced object in the renumbering
table, and push the referenced object onto the queue. As a special
case, when writing out a stream dictionary, replace length,
filters, and decode parameters as required.

Write out dictionary or array, replacing any unresolvable indirect
object references with null (pdf spec says reference to
non-existent object is legal and resolves to null) and any
resolvable ones with references to the renumbered objects.

	If the object is a stream, write stream\n, the stream contents
(from the memory buffer), and \nendstream\n.

	When done, write endobj.

Once we have finished the queue, all referenced objects will have been
written out and all deleted objects or unreferenced objects will have
been skipped. The new cross-reference table will contain an offset for
every new object number from 1 up to the number of objects written. This
can be used to write out a new xref table. Finally we can write out the
trailer dictionary with appropriately computed /ID (see spec, 8.3, File
Identifiers), the cross reference table offset, and %%EOF.

Filtered Streams

Support for streams is implemented through the Pipeline interface
which was designed for this library.

When reading streams, create a series of Pipeline objects. The
Pipeline abstract base requires implementation write() and
finish() and provides an implementation of getNext(). Each
pipeline object, upon receiving data, does whatever it is going to do
and then writes the data (possibly modified) to its successor.
Alternatively, a pipeline may be an end-of-the-line pipeline that does
something like store its output to a file or a memory buffer ignoring a
successor. For additional details, look at
Pipeline.hh.

QPDF can read raw or filtered streams. When reading a filtered
stream, the QPDF class creates a Pipeline object for one of each
appropriate filter object and chains them together. The last filter
should write to whatever type of output is required. The QPDF class
has an interface to write raw or filtered stream contents to a given
pipeline.

Object Accessor Methods

For general information about how to access instances of
QPDFObjectHandle, please see the comments in
QPDFObjectHandle.hh. Search for “Accessor
methods”. This section provides a more in-depth discussion of the
behavior and the rationale for the behavior.

Why were type errors made into warnings? When type checks were
introduced into qpdf in the early days, it was expected that type errors
would only occur as a result of programmer error. However, in practice,
type errors would occur with malformed PDF files because of assumptions
made in code, including code within the qpdf library and code written by
library users. The most common case would be chaining calls to
getKey() to access keys deep within a dictionary. In many cases,
qpdf would be able to recover from these situations, but the old
behavior often resulted in crashes rather than graceful recovery. For
this reason, the errors were changed to warnings.

Why even warn about type errors when the user can’t usually do anything
about them? Type warnings are extremely valuable during development.
Since it’s impossible to catch at compile time things like typos in
dictionary key names or logic errors around what the structure of a PDF
file might be, the presence of type warnings can save lots of developer
time. They have also proven useful in exposing issues in qpdf itself
that would have otherwise gone undetected.

Can there be a type-safe QPDFObjectHandle? At the time of the
release of qpdf 11, there is active work being done toward the goal of
creating a way to work with PDF objects that is more type-safe and
closer in feel to the current C++ standard library. It is hoped that
this work will make it easier to write bindings to qpdf in modern
languages like Rust. If this happens,
it will likely be by providing an alternative to QPDFObjectHandle
that provides a separate path to the underlying object. Details are
still being worked out. Fundamentally, PDF objects are not strongly
typed. They are similar to JSON objects or to objects in dynamic
languages like Python: there are certain
things you can only do to objects of a given type, but you can replace
an object of one type with an object of another. Because of this,
there will always be some checks that will happen at runtime.

Why does the behavior of a type exception differ between the C and C++
API? There is no way to throw and catch exceptions in C short of
something like setjmp and longjmp, and that approach is not
portable across language barriers. Since the C API is often used from
other languages, it’s important to keep things as simple as possible.
Starting in qpdf 10.5, exceptions that used to crash code using the C
API will be written to stderr by default, and it is possible to register
an error handler. There’s no reason that the error handler can’t
simulate exception handling in some way, such as by using setjmp and
longjmp or by setting some variable that can be checked after
library calls are made. In retrospect, it might have been better if the
C API object handle methods returned error codes like the other methods
and set return values in passed-in pointers, but this would complicate
both the implementation and the use of the library for a case that is
actually quite rare and largely avoidable.

How can I avoid type warnings altogether? For each
getSomethingValue accessor that returns a value of the requested
type and issues a warning for objects of the wrong type, there is also
a getValueAsSomething method (since qpdf 10.6) that returns false
for objects of the wrong type and otherwise returns true and
initializes a reference. These methods never generate type warnings
and provide an alternative to explicitly checking the type of an
object before calling an accessor method.

Smart Pointers

This section describes changes to the use of smart pointers that were
made in qpdf 10.6.0 and 11.0.0.

In qpdf 11.0.0, PointerHolder was replaced with
std::shared_ptr in qpdf’s public API. A backward-compatible
PointerHolder class has been provided that makes it possible for
most code to remain unchanged. PointerHolder may eventually be
removed from qpdf entirely, but this will not happen for a while to
make it easier for people who need to support multiple versions of
qpdf.

In 10.6.0, some enhancements were made to PointerHolder to ease
the transition. These intermediate steps are relevant only for
versions 10.6.0 through 10.6.3 but can still help with incremental
modification of code.

The POINTERHOLDER_TRANSITION preprocessor symbol was introduced in
qpdf 10.6.0 to help people transition from PointerHolder to
std::shared_ptr. If you don’t define this, you will get a compiler
warning. Defining it to any value will suppress the warning. An
explanation appears below of the different possible values for this
symbol and what they mean.

Starting in qpdf 11.0.0, including <qpdf/PointerHolder.hh> defines
the symbol POINTERHOLDER_IS_SHARED_POINTER. This can be used with
conditional compilation to make it possible to support different
versions of qpdf.

The rest of this section provides the details.

Transitional Enhancements to PointerHolder

In qpdf 10.6.0, some changes were to PointerHolder to make it
easier to prepare for the transition to std::shared_ptr. These
enhancements also make it easier to incrementally upgrade your code.
The following changes were made to PointerHolder to make its
behavior closer to that of std::shared_ptr:

	get() was added as an alternative to getPointer()

	use_count() was added as an alternative to getRefcount()

	A new global helper function make_pointer_holder behaves
similarly to std::make_shared, so you can use
make_pointer_holder<T>(args...) to create a PointerHolder<T>
with new T(args...) as the pointer.

	A new global helper function make_array_pointer_holder takes a
size and creates a PointerHolder to an array. It is a
counterpart to the newly added QUtil::make_shared_array method,
which does the same thing with a std::shared_ptr.

PointerHolder had a long-standing bug: a const
PointerHolder<T> would only provide a T const* with its
getPointer method. This is incorrect and is not how standard
library C++ smart pointers or regular pointers behave. The correct
semantics would be that a const PointerHolder<T> would not accept
a new pointer after being created (PointerHolder has always
behaved correctly in this way) but would still allow you to modify the
item being pointed to. If you don’t want to mutate the thing it points
to, use PointerHolder<T const> instead. The new get() method
behaves correctly. It is therefore not exactly the same as
getPointer(), but it does behave the way get() behaves with
std::shared_ptr. This shouldn’t make any difference to any
correctly written code.

Differences between PointerHolder and std::shared_ptr

Here is a list of things you need to think about when migrating from
PointerHolder to std::shared_ptr. After the list, we will
discuss how to address each one using the POINTERHOLDER_TRANSITION
preprocessor symbol or other C++ coding techniques.

	PointerHolder<T> has an implicit constructor that takes a
T*, which means you can assign a T* directly to a
PointerHolder<T> or pass a T* to a function that expects a
PointerHolder<T> as a parameter. std::shared_ptr<T> does not
have this behavior, though you can still assign nullptr to a
std::shared_ptr<T> and compare nullptr with a
std::shared_ptr<T>. Here are some examples of how you might need
to change your code:

	Old code:
	PointerHolder<X> x_p;
X* x = new X();
x_p = x;

	New code:
	auto x_p = std::make_shared<X>();
X* x = x_p.get();
// or, less safe, but closer:
std::shared_ptr<X> x_p;
X* x = new X();
x_p = std::shared_ptr<X>(x);

	Old code:
	PointerHolder<Base> base_p;
Derived* derived = new Derived();
base_p = derived;

	New code:
	std::shared_ptr<Base> base_p;
Derived* derived = new Derived();
base_p = std::shared_ptr<Base>(derived);

	PointerHolder<T> has getPointer() to get the underlying
pointer. It also has the seldom-used getRefcount() method to get
the reference count. std::shared_ptr<T> has get() and
use_count(). In qpdf 10.6, PointerHolder<T> also has
get() and use_count().

Addressing the Differences

If you are not ready to take action yet, you can #define
POINTERHOLDER_TRANSITION 0 before including any qpdf header file or
add the definition of that symbol to your build. This will provide the
backward-compatible PointerHolder API without any deprecation
warnings. This should be a temporary measure as PointerHolder may
disappear in the future. If you need to be able to support newer and
older versions of qpdf, there are other options, explained below.

Note that, even with 0, you should rebuild and test your code.
There may be compiler errors if you have containers of
PointerHolder, but most code should compile without any changes.
There are no uses of containers of PointerHolder in qpdf’s API.

There are two significant things you can do to minimize the impact of
switching from PointerHolder to std::shared_ptr:

	Use auto and decltype whenever possible when working with
PointerHolder variables that are exchanged with the qpdf API.

	Use the POINTERHOLDER_TRANSITION preprocessor symbol to identify
and resolve the differences described above.

To use POINTERHOLDER_TRANSITION, you will need to #define it
before including any qpdf header files or specify its value as part of
your build. The table below describes the values of
POINTERHOLDER_TRANSITION. This information is also summarized in
include/qpdf/PointerHolder.hh, so you will have it handy
without consulting this manual.

POINTERHOLDER_TRANSITION values	value
	meaning

	undefined
	Same as 0 but issues a warning

	0
	Provide a backward compatible PointerHolder and suppress
all deprecation warnings; supports all prior qpdf versions

	1
	Make the PointerHolder<T>(T*) constructor explicit;
resulting code supports all prior qpdf versions

	2
	Deprecate getPointer() and getRefcount(); requires
qpdf 10.6.0 or later.

	3
	Deprecate all uses of PointerHolder; requires qpdf 11.0.0
or later

	4
	Disable all functionality from qpdf/PointerHolder.hh so
that #include-ing it has no effect other than defining
POINTERHOLDER_IS_SHARED_POINTER; requires qpdf 11.0.0 or
later.

Based on the above, here is a procedure for preparing your code. This
is the procedure that was used for the qpdf code itself.

You can do these steps without breaking support for qpdf versions
before 10.6.0:

	Find all occurrences of PointerHolder in the code. See whether
any of them can just be outright replaced with std::shared_ptr
or std::unique_ptr. If you have been using qpdf prior to
adopting C++11 and were using PointerHolder as a general-purpose
smart pointer, you may have cases that can be replaced in this way.

For example:

	Simple PointerHolder<T> construction can be replaced with
either the equivalent std::shared_ptr<T> construction or, if
the constructor is public, with std::make_shared<T>(args...).
If you are creating a smart pointer that is never copied, you may
be able to use std::unique_ptr<T> instead.

	Array allocations will have to be rewritten.

Allocating a PointerHolder to an array looked like this:

PointerHolder<X> p(true, new X[n]);

To allocate a std::shared_ptr to an array:

auto p = std::shared_ptr<X>(new X[n], std::default_delete<X[]>());
// If you don't mind using QUtil, there's QUtil::make_shared_array<X>(n).
// If you are using c++20, you can use std::make_shared<X[]>(n)
// to get a std::shared_ptr<X[]> instead of a std::shared_ptr<X>.

To allocate a std::unique_ptr to an array:

auto p = std::make_unique<X[]>(n);
// or, if X has a private constructor:
auto p = std::unique_ptr<X[]>(new X[n]);

	If a PointerHolder<T> can’t be replaced with a standard library
smart pointer because it is used with an older qpdf API call,
perhaps it can be declared using auto or decltype so that,
when building with a newer qpdf API changes, your code will just
need to be recompiled.

	#define POINTERHOLDER_TRANSITION 1 to enable deprecation
warnings for all implicit constructions of PointerHolder<T> from
a plain T*. When you find one, explicitly construct the
PointerHolder<T>.

	Old code:

PointerHolder<X> x = new X();

	New code:

auto x = PointerHolder<X>(new X(...)); // all versions of qpdf
// or, if X(...) is public:
auto x = make_pointer_holder<X>(...); // only 10.6 and above

Other examples appear above.

If you need to support older versions of qpdf than 10.6, this is as
far as you can go without conditional compilation.

Starting in qpdf 11.0.0, including <qpdf/PointerHolder.hh> defines
the symbol POINTERHOLDER_IS_SHARED_POINTER. If you want to support
older versions of qpdf and still transition so that the
backward-compatible PointerHolder is not in use, you can separate
old code and new code by testing with the
POINTERHOLDER_IS_SHARED_POINTER preprocessor symbol, as in

#include <qpdf/PointerHolder.hh>
#ifdef POINTERHOLDER_IS_SHARED_POINTER
std::shared_ptr<X> x;
#else
PointerHolder<X> x;
#endif // POINTERHOLDER_IS_SHARED_POINTER
x = decltype(x)(new X())

or

#include <qpdf/PointerHolder.hh>
#ifdef POINTERHOLDER_IS_SHARED_POINTER
auto x_p = std::make_shared<X>();
X* x = x_p.get();
#else
auto x_p = PointerHolder<X>(new X());
X* x = x_p.getPointer();
#endif // POINTERHOLDER_IS_SHARED_POINTER
x_p->doSomething();
x->doSomethingElse();

If you don’t need to support older versions of qpdf, you can proceed
with these steps without protecting changes with the preprocessor
symbol. Here are the remaining changes.

	#define POINTERHOLDER_TRANSITION 2 to enable deprecation of
getPointer() and getRefcount()

	Replace getPointer() with get() and getRefcount() with
use_count(). These methods were not present prior to 10.6.0.

When you have gotten your code to compile cleanly with
POINTERHOLDER_TRANSITION=2, you are well on your way to being
ready for eliminating PointerHolder entirely. The code at this
point will not work with any qpdf version prior to 10.6.0.

To support qpdf 11.0.0 and newer and remove PointerHolder from
your code, continue with the following steps:

	Replace all occurrences of PointerHolder with
std::shared_ptr except in the literal statement #include
<qpdf/PointerHolder.hh>

	Replace all occurrences of make_pointer_holder with
std::make_shared

	Replace all occurrences of make_array_pointer_holder with
QUtil::make_shared_array. You will need to include
<qpdf/QUtil.hh> if you haven’t already done so.

	Make sure <memory> is included wherever you were including
<qpdf/PointerHolder.hh>.

	If you were using any array PointerHolder<T> objects, replace
them as above. You can let the compiler find these for you.

	#define POINTERHOLDER_TRANSITION 3 to enable deprecation of
all PointerHolder<T> construction.

	Build and test. Fix any remaining issues.

	If not supporting older versions of qpdf, remove all references to
<qpdf/PointerHolder.hh>. Otherwise, you will still need to
include it but can #define POINTERHOLDER_TRANSITION 4 to prevent
PointerHolder from being defined. The
POINTERHOLDER_IS_SHARED_POINTER symbol will still be defined.

Historical Background

Since its inception, the qpdf library used its own smart pointer
class, PointerHolder. The PointerHolder class was originally
created long before std::shared_ptr existed, and qpdf itself
didn’t start requiring a C++11 compiler until version 9.1.0 released in
late 2019. With current C++ versions, it is no longer desirable for qpdf
to have its own smart pointer class.

 Previous
 Next

 © Copyright 2005-2023, Jay Berkenbilt.
 Revision d8371889.

 Built with Sphinx using a
 theme
 provided by Read the Docs.

 Read the Docs
 v: 11.6

 	Versions
	latest
	stable
	11.6
	11.5
	11.4
	11.3
	11.2
	11.1
	11.0
	10.6
	10.5
	doc-check

 	Downloads
	pdf
	html
	epub

 	On Read the Docs
	
 Project Home

	
 Builds

