

 QPDF

 11.3

 Contents:

	What is QPDF?
	License
	Downloading QPDF
	Building and Installing QPDF	Dependencies	Basic Dependencies
	Test Dependencies
	Additional Requirements on Windows
	Requirements for Building Documentation

	Build Instructions	Basic Build Invocation
	Installation and Packaging

	Build Options	Basic Build Options
	Options for Working on qpdf
	Environment-Specific Options
	Build-time Crypto Selection
	Advanced Build Options
	Building without wchar_t

	Crypto Providers	Runtime Crypto Provider Selection
	Crypto Provider Information for Developers
	Crypto Provider Design Notes

	Converting From autoconf to cmake

	Notes for Packagers
	Running qpdf
	QDF Mode
	Using the QPDF Library
	Weak Cryptography
	qpdf JSON
	Contributing to qpdf
	Design and Library Notes
	QPDFJob: a Job-Based Interface
	Linearization
	Object and Cross-Reference Streams
	PDF Encryption
	Release Notes
	Acknowledgments

 QPDF

 	
	Building and Installing QPDF
	
 Edit on GitHub

Building and Installing QPDF

This chapter describes how to build and install qpdf.

Dependencies

qpdf has few external dependencies. This section describes what you
need to build qpdf in various circumstances.

Basic Dependencies

	A C++ compiler that supports C++-17

	CMake version 3.16 or later

	zlib or a compatible zlib implementation

	A libjpeg-compatible library such as jpeg or
libjpeg-turbo

	Recommended but not required: gnutls
to be able to use the gnutls crypto provider and/or openssl to be able to use the openssl crypto
provider

The qpdf source tree includes a few automatically generated files. The
code generator uses Python 3. Automatic code generation is off by
default. For a discussion, refer to Build Options.

Test Dependencies

qpdf’s test suite is run by ctest, which is part of CMake, but
the tests themselves are implemented using an embedded copy of qtest, which is implemented in perl. On
Windows, MSYS2’s perl is known to work.

qtest requires GNU diffutils or any other diff that
supports diff -u. The default diff command works on
GNU/Linux and MacOS.

Part of qpdf’s test suite does comparisons of the contents PDF files
by converting them to images and comparing the images. The image
comparison tests are disabled by default. Those tests are not required
for determining correctness of a qpdf build since the test suite also
contains expected output files that are compared literally. The image
comparison tests provide an extra check to make sure that any content
transformations don’t break the rendering of pages. Transformations
that affect the content streams themselves are off by default and are
only provided to help developers look into the contents of PDF files.
If you are making deep changes to the library that cause changes in
the contents of the files that qpdf generates, then you should enable
the image comparison tests. Enable them by setting the
QPDF_TEST_COMPARE_IMAGES environment variable to 1 before
running tests. Image comparison tests add these additional
requirements:

	libtiff command-line
utilities

	GhostScript version 8.60 or newer

Note: prior to qpdf 11, image comparison tests were enabled within
qpdf.test, and you had to disable them by setting
QPDF_SKIP_TEST_COMPARE_IMAGES to 1. This was done
automatically by ./configure. Now you have to enable image
comparison tests by setting an environment variable. This change was
made because developers have to set the environment variable
themselves now rather than setting it through the build. Either way,
they are off by default.

Additional Requirements on Windows

	To build qpdf with Visual Studio, there are no additional
requirements when the default cmake options are used. You can build
qpdf from a Visual C++ command-line shell.

	To build with mingw, MSYS2 is recommended with the mingw32 and/or
mingw64 tool chains. You can also build with MSVC from an MSYS2
environment.

	qpdf’s test suite can run within the MSYS2 environment for both
mingw and MSVC-based builds.

For additional notes, see README-windows.md in the source
distribution.

Requirements for Building Documentation

The qpdf manual is written in reStructured Text and built with Sphinx using the Read the Docs Sphinx Theme. Versions of sphinx prior
to version 4.3.2 probably won’t work. Sphinx requires Python 3. In
order to build the HTML documentation from source, you need to install
sphinx and the theme, which you can typically do with pip install
sphinx sphinx_rtd_theme. To build the PDF version of the
documentation, you need pdflatex, latexmk, and a fairly
complete LaTeX installation. Detailed requirements can be found in the
Sphinx documentation. To see how the documentation is built for the
qpdf distribution, refer to the build-scripts/build-doc file
in the qpdf source distribution.

Build Instructions

Starting with qpdf 11, qpdf is built with CMake.

Basic Build Invocation

qpdf uses cmake in an ordinary way, so refer to the CMake
documentation for details about how to run cmake. Here is a
brief summary.

You can usually just run

cmake -S . -B build
cmake --build build

If you are using a multi-configuration generator such as MSVC, you
should pass --config <Config> (where <Config> is Release,
Debug, RelWithDebInfo, or MinSizeRel as discussed in the
CMake documentation) to the build command. If you are running a
single configuration generator such as the default Makefile generators
in Linux or MSYS, you may want to pass -DCMAKE_BUILD_TYPE=<Config>
to the original cmake command.

Run ctest to run the test suite. Since the real tests are
implemented with qtest, you will
want to pass --verbose to cmake so you can see the individual
test outputs. Otherwise, you will see a small number of ctest
commands that take a very long to run. If you want to run only a
specific test file in a specific test suite, you can set the TESTS
environment variable (used by qtest-driver) and pass the -R
parameter to ctest. For example:

TESTS=qutil ctest --verbose -R libtests

would run only qutil.test from the libtests test suite.

Installation and Packaging

Installation can be performed using cmake --install or cpack.
For most normal use cases, cmake --install or cpack can be run
in the normal way as described in CMake documentation. qpdf follows
all normal installation conventions and uses CMake-defined variables
for standard behavior.

There are several components that can be installed separately:

Installation Components	cli
	Command-line tools

	lib
	The runtime libraries; required if you built with shared
libraries

	dev
	Static libraries, header files, and other files needed by
developers

	doc
	Documentation and, if selected for installation, the manual

	examples
	Example source files

Note that the lib component installs only runtime libraries, not
header files or other files/links needed to build against qpdf. For
that, you need dev. If you are using shared libraries, the dev
will install files or create symbolic links that depend on files
installed by lib, so you will need to install both. If you wanted
to build software against the qpdf library and only wanted to install
the files you needed for that purpose, here are some examples:

	Install development files with static libraries only:

cmake -S . -B build -DCMAKE_BUILD_TYPE=RelWithDebInfo -DBUILD_SHARED_LIBS=OFF
cmake --build build --parallel --target libqpdf
cmake --install build --component dev

	Install development files with shared libraries only:

cmake -S . -B build -DCMAKE_BUILD_TYPE=RelWithDebInfo -DBUILD_STATIC_LIBS=OFF
cmake --build build --parallel --target libqpdf
cmake --install build --component lib
cmake --install build --component dev

	Install development files with shared and static libraries:

cmake -S . -B build -DCMAKE_BUILD_TYPE=RelWithDebInfo
cmake --build build --parallel --target libqpdf libqpdf_static
cmake --install build --component lib
cmake --install build --component dev

There are also separate options, discussed in Build Options,
that control how certain specific parts of the software are installed.

Build Options

All available build options are defined in the the top-level
CMakeLists.txt file and have help text. You can see them using
any standard cmake front-end (like cmake-gui or ccmake). This
section describes options that apply to most users. If you are trying
to map autoconf options (from prior to qpdf 11) to cmake options,
please see Converting From autoconf to cmake.

If you are packaging qpdf for a distribution, you should also read
Notes for Packagers.

Basic Build Options

	BUILD_DOC
	Whether to build documentation with sphinx. You must have the
required tools installed.

	BUILD_DOC_HTML
	Visible when BUILD_DOC is selected. This option controls building
HTML documentation separately from PDF documentation since
the sphinx theme is only needed for the HTML documentation.

	BUILD_DOC_PDF
	Visible when BUILD_DOC is selected. This option controls building
PDF documentation separately from HTML documentation since
additional tools are required to build the PDF documentation.

	BUILD_SHARED_LIBS, BUILD_STATIC_LIBS
	You can configure whether to build shared libraries, static
libraries, or both. You must select at least one of these options.
For rapid iteration, select only one as this cuts the build time in
half.

On Windows, if you build with shared libraries, you must have the
output directory for libqpdf (e.g. libqpdf/Release or
libqpdf within the build directory) in your path so that the
compiled executables can find the DLL. Updating your path is not
necessary if you build with static libraries only.

	QTEST_COLOR
	Turn this on or off to control whether qtest uses color in its
output.

Options for Working on qpdf

	CHECK_SIZES
	The source file qpdf/sizes.cc is used to display the sizes
of all objects in the public API. Consistency of its output between
releases is used as part of the check against accidental breakage of
the binary interface (ABI). Turning this on causes a test to be run
that ensures an exact match between classes in sizes.cc and
classes in the library’s public API. This option requires Python 3.

	ENABLE_QTC
	This is off by default, except in maintainer mode. When off,
QTC::TC calls are compiled out by having QTC::TC be an empty
inline function. The underlying QTC::TC remains in the library,
so it is possible to build and package the qpdf library with
ENABLE_QTC turned off while still allowing developer code to use
QTC::TC if desired. If you are modifying qpdf code, it’s a good
idea to have this on for more robust automated testing. Otherwise,
there’s no reason to have it on.

	GENERATE_AUTO_JOB
	Some qpdf source files are automatically generated from
job.yml and the CLI documentation. If you are adding new
command-line arguments to the qpdf CLI or updating
manual/cli.rst in the qpdf sources, you should turn this on.
This option requires Python 3.

	WERROR
	Make any compiler warnings into errors. We want qpdf to compile free
of warnings whenever possible, but there’s always a chance that a
compiler upgrade or tool change may cause warnings to appear that
weren’t there before. If you are testing qpdf with a new compiler,
you should turn this on.

Environment-Specific Options

	SHOW_FAILED_TEST_OUTPUT
	Ordinarily, qtest (which drives qpdf’s test suite) writes detailed
information about its output to the file qtest.log in the build
output directory. If you are running a build in a continuous
integration or automated environment where you can’t get to those
files, you should enable this option and also run ctest
--verbose or ctest --output-on-failure. This will cause
detailed test failure output to be written into the build log.

	CI_MODE
	Turning this on sets options used in qpdf’s continuous integration
environment to ensure we catch as many problems as possible.
Specifically, this option enables SHOW_FAILED_TEST_OUTPUT and
WERROR and forces the native crypto provider to be built.

	MAINTAINER_MODE
	Turning this option on sets options that should be on if you are
maintaining qpdf. In turns on the following:

	BUILD_DOC

	CHECK_SIZES

	ENABLE_QTC

	GENERATE_AUTO_JOB

	WERROR

	REQUIRE_NATIVE_CRYPTO

It is possible to turn BUILD_DOC off in maintainer mode so that
the extra requirements for building documentation don’t have to be
available.

Build-time Crypto Selection

Since version 9.1.0, qpdf can use external crypto providers in
addition to its native provider. For a general discussion, see
Crypto Providers. This section discusses how to configure which crypto
providers are compiled into qpdf.

In nearly all cases, external crypto providers should be preferred
over the native one. However, if you are not concerned about working
with encrypted files and want to reduce the number of dependencies,
the native crypto provider is fully supported.

By default, qpdf’s build enables every external crypto providers whose
dependencies are available and only enables the native crypto provider
if no external providers are available. You can change this behavior
with the options described here.

	USE_IMPLICIT_CRYPTO
	This is on by default. If turned off, only explicitly selected
crypto providers will be built. You must use at least one of the
REQUIRE options below.

	ALLOW_CRYPTO_NATIVE
	This option is only available when USE_IMPLICIT_CRYPTO is selected,
in which case it is on by default. Turning it off prevents qpdf from
falling back to the native crypto provider when no external provider
is available.

	REQUIRE_CRYPTO_NATIVE
	Build the native crypto provider even if other options are
available.

	REQUIRE_CRYPTO_GNUTLS
	Require the gnutls crypto provider. Turning this on makes in an
error if the gnutls library is not available.

	REQUIRE_CRYPTO_OPENSSL
	Require the openssl crypto provider. Turning this on makes in an
error if the openssl library is not available.

	DEFAULT_CRYPTO
	Explicitly select which crypto provider is used by default. See
Runtime Crypto Provider Selection for information about run-time selection of
the crypto provider. If not specified, qpdf will pick gnutls if
available, otherwise openssl if available, and finally native as a
last priority.

Example: if you wanted to build with only the gnutls crypto provider,
you should run cmake with -DUSE_IMPLICIT_CRYPTO=0
-DREQUIRE_CRYPTO_GNUTLS=1.

Advanced Build Options

These options are used only for special purposes and are not relevant
to most users.

	AVOID_WINDOWS_HANDLE
	Disable use of the HANDLE type in Windows. This can be useful if
you are building for certain embedded Windows environments. Some
functionality won’t work, but you can still process PDF files from
memory in this configuration.

	BUILD_DOC_DIST, INSTALL_MANUAL
	By default, installing qpdf does not include a pre-built copy of the
manual. Instead, it installs a README file that tells people where
to find the manual online. If you want to install the manual, you
must enable the INSTALL_MANUAL option, and you must have a
doc-dist directory in the manual directory of the build. The
doc-dist directory is created if BUILD_DOC_DIST is selected
and BUILD_DOC_PDF and BUILD_DOC_HTML are both on.

The BUILD_DOC_DIST and INSTALL_MANUAL options are separate
and independent because of the additional tools required to build
documentation. In particular, for qpdf’s official release
preparation, a doc-dist directory is built in Linux and then
extracted into the Windows builds so that it can be included in the
Windows installers. This prevents us from having to build the
documentation in a Windows environment. For additional discussion,
see Documentation Packaging Rationale.

	INSTALL_CMAKE_PACKAGE
	Controls whether or not to install qpdf’s cmake configuration file
(on by default).

	INSTALL_EXAMPLES
	Controls whether or not to install qpdf’s example source files with
documentation (on by default).

	INSTALL_PKGCONFIG
	Controls whether or not to install qpdf’s pkg-config configuration
file (on by default).

	OSS_FUZZ
	Turning this option on changes the build of the fuzzers in a manner
specifically required by Google’s oss-fuzz project. There is no
reason to turn this on for any other reason. It is enabled by the
build script that builds qpdf from that context.

	SKIP_OS_SECURE_RANDOM, USE_INSECURE_RANDOM
	The native crypto implementation uses the operating systems’s secure
random number source when available. It is not used when an external
crypto provider is in use. If you are building in a very specialized
environment where you are not using an external crypto provider but
can’t use the OS-provided secure random number generator, you can
turn both of these options on. This will cause qpdf to fall back to
an insecure random number generator, which may generate guessable
random numbers. The resulting qpdf is still secure, but encrypted
files may be more subject to brute force attacks. Unless you know
you need these options for a specialized purpose, you don’t need
them. These options were added to qpdf in response to a special
request from a user who needed to run a specialized PDF-related task
in an embedded environment that didn’t have a secure random number
source.

Building without wchar_t

It is possible to build qpdf on a system that doesn’t have
wchar_t. The resulting build of qpdf is not API-compatible with a
regular qpdf build, so this option cannot be selected from cmake. This
option was added to qpdf to support installation on a very stripped
down embedded environment that included only a partial implementation
of the standard C++ library.

You can disable use of wchar_t in qpdf’s code by defining the
QPDF_NO_WCHAR_T preprocessor symbol in your build (e.g. by
including -DQPDF_NO_WCHAR_T in CFLAGS and CXXFLAGS).

While wchar_t is part of the C++ standard library and should be
present on virtually every system, there are some stripped down
systems, such as those targeting certain embedded environments, that
lack wchar_t. Internally, qpdf uses UTF-8 encoding for everything,
so there is nothing important in qpdf’s API that uses wchar_t.
However, there are some helper methods for converting between
wchar_t* and char*.

If you are building in an environment that does not support
wchar_t, you can define the preprocessor symbol
QPDF_NO_WCHAR_T in your build. This will work whether you are
building qpdf and need to avoid compiling the code that uses wchar_t
or whether you are building client code that uses qpdf.

Note that, when you build code with libqpdf, it is not necessary to
have the definition of QPDF_NO_WCHAR_T in your build match what
was defined when the library was built as long as you are not calling
any of the methods that use wchar_t.

Crypto Providers

Starting with qpdf 9.1.0, the qpdf library can be built with multiple
implementations of providers of cryptographic functions, which we refer
to as “crypto providers.” At the time of writing, a crypto
implementation must provide MD5 and SHA2 (256, 384, and 512-bit) hashes
and RC4 and AES256 with and without CBC encryption. In the future, if
digital signature is added to qpdf, there may be additional requirements
beyond this. Some of these are weak cryptographic algorithms. For a
discussion of why they’re needed, see Weak Cryptography.

The available crypto provider implementations are gnutls,
openssl, and native. OpenSSL support was added in qpdf 10.0.0
with support for OpenSSL added in 10.4.0. GnuTLS support was
introduced in qpdf 9.1.0. Additional implementations can be added as
needed. It is also possible for a developer to provide their own
implementation without modifying the qpdf library.

For information about selecting which crypto providers are compiled
into qpdf, see Build-time Crypto Selection.

Runtime Crypto Provider Selection

You can use the --show-crypto option to qpdf to
get a list of available crypto providers. The default provider is
always listed first, and the rest are listed in lexical order. Each
crypto provider is listed on a line by itself with no other text,
enabling the output of this command to be used easily in scripts.

You can override which crypto provider is used by setting the
QPDF_CRYPTO_PROVIDER environment variable. There are few reasons
to ever do this, but you might want to do it if you were explicitly
trying to compare behavior of two different crypto providers while
testing performance or reproducing a bug. It could also be useful for
people who are implementing their own crypto providers.

Crypto Provider Information for Developers

If you are writing code that uses libqpdf and you want to force a
certain crypto provider to be used, you can call the method
QPDFCryptoProvider::setDefaultProvider. The argument is the name
of a built-in or developer-supplied provider. To add your own crypto
provider, you have to create a class derived from QPDFCryptoImpl
and register it with QPDFCryptoProvider. For additional
information, see comments in include/qpdf/QPDFCryptoImpl.hh.

Crypto Provider Design Notes

This section describes a few bits of rationale for why the crypto
provider interface was set up the way it was. You don’t need to know any
of this information, but it’s provided for the record and in case it’s
interesting.

As a general rule, I want to avoid as much as possible including large
blocks of code that are conditionally compiled such that, in most
builds, some code is never built. This is dangerous because it makes it
very easy for invalid code to creep in unnoticed. As such, I want it to
be possible to build qpdf with all available crypto providers, and this
is the way I build qpdf for local development. At the same time, if a
particular packager feels that it is a security liability for qpdf to
use crypto functionality from other than a library that gets
considerable scrutiny for this specific purpose (such as gnutls,
openssl, or nettle), then I want to give that packager the ability to
completely disable qpdf’s native implementation. Or if someone wants to
avoid adding a dependency on one of the external crypto providers, I
don’t want the availability of the provider to impose additional
external dependencies within that environment. Both of these are
situations that I know to be true for some users of qpdf.

I want registration and selection of crypto providers to be thread-safe,
and I want it to work deterministically for a developer to provide their
own crypto provider and be able to set it up as the default. This was
the primary motivation behind requiring C++-11 as doing so enabled me to
exploit the guaranteed thread safety of local block static
initialization. The QPDFCryptoProvider class uses a singleton
pattern with thread-safe initialization to create the singleton instance
of QPDFCryptoProvider and exposes only static methods in its public
interface. In this way, if a developer wants to call any
QPDFCryptoProvider methods, the library guarantees the
QPDFCryptoProvider is fully initialized and all built-in crypto
providers are registered. Making QPDFCryptoProvider actually know
about all the built-in providers may seem a bit sad at first, but this
choice makes it extremely clear exactly what the initialization behavior
is. There’s no question about provider implementations automatically
registering themselves in a nondeterministic order. It also means that
implementations do not need to know anything about the provider
interface, which makes them easier to test in isolation. Another
advantage of this approach is that a developer who wants to develop
their own crypto provider can do so in complete isolation from the qpdf
library and, with just two calls, can make qpdf use their provider in
their application. If they decided to contribute their code, plugging it
into the qpdf library would require a very small change to qpdf’s source
code.

The decision to make the crypto provider selectable at runtime was one I
struggled with a little, but I decided to do it for various reasons.
Allowing an end user to switch crypto providers easily could be very
useful for reproducing a potential bug. If a user reports a bug that
some cryptographic thing is broken, I can easily ask that person to try
with the QPDF_CRYPTO_PROVIDER variable set to different values. The
same could apply in the event of a performance problem. This also makes
it easier for qpdf’s own test suite to exercise code with different
providers without having to make every program that links with qpdf
aware of the possibility of multiple providers. In qpdf’s continuous
integration environment, the entire test suite is run for each supported
crypto provider. This is made simple by being able to select the
provider using an environment variable.

Finally, making crypto providers selectable in this way establish a
pattern that I may follow again in the future for stream filter
providers. One could imagine a future enhancement where someone could
provide their own implementations for basic filters like
/FlateDecode or for other filters that qpdf doesn’t support.
Implementing the registration functions and internal storage of
registered providers was also easier using C++-11’s functional
interfaces, which was another reason to require C++-11 at this time.

Converting From autoconf to cmake

Versions of qpdf before qpdf 11 were built with autoconf and a
home-grown GNU Make-based build system. If you built qpdf with special
./configure options, this section can help you switch them over to
cmake.

In most cases, there is a one-to-one mapping between configure options
and cmake options. There are a few exceptions:

	The cmake build behaves differently with respect to whether or not
to include support for the native crypto provider. Specifically, it
is not implicitly enabled unless explicitly requested if there are
other options available. You can force it to be included by enabling
REQUIRE_CRYPTO_NATIVE. For details, see Build-time Crypto Selection.

	The --enable-external-libs option is no longer available. The
cmake build detects the presence of external-libs automatically.
See README-windows.md in the source distribution for a more
in-depth discussion.

	The sense of the option representing use of the OS-provided secure
random number generator has been reversed: the
--enable-os-secure-random, which was on by default, has been
replaced by the SKIP_OS_SECURE_RANDOM option, which is off by
default. The option’s new name and behavior match the preprocessor
symbol that it turns on.

	Non-default test configuration is selected with environment
variables rather than cmake. The old ./configure options just
set environment variables. Note that the sense of the variable for
image comparison tests has been reversed. It used to be that you had
to set QPDF_SKIP_TEST_COMPARE_IMAGES to 1 to disable image
comparison tests. This was done by default. Now you have to set
QPDF_TEST_COMPARE_IMAGES to 1 to enable image comparison
tests. Either way, they are off by default.

	Non-user-visible change: the preprocessor symbol that triggers the
export of functions into the public ABI (application binary
interface) has been changed from DLL_EXPORT to
libqpdf_EXPORTS. This detail is encapsulated in the build and is
only relevant to people who are building qpdf on their own or who
may have previously needed to work around a collision between qpdf’s
use of DLL_EXPORT and someone else’s use of the same symbol.

	A handful of options that were specific to autoconf or the old build
system have been dropped.

	cmake --install installs example source code in
doc/qpdf/examples in the examples installation component.
Packagers are encouraged to package this with development files if
there is no separate doc package. This can be turned off by
disabling the INSTALL_EXAMPLES build option.

There are some new options available in the cmake build that were not
available in the autoconf build. This table shows the old options and
their equivalents in cmake.

configure flags to cmake options	enable-avoid-windows-handle
	AVOID_WINDOWS_HANDLE

	enable-check-autofiles
	none – not relevant to cmake

	enable-crypto-gnutls
	REQUIRE_CRYPTO_GNUTLS

	enable-crypto-native
	REQUIRE_CRYPTO_NATIVE (but see above)

	enable-crypto-openssl
	REQUIRE_CRYPTO_OPENSSL

	enable-doc-maintenance
	BUILD_DOC

	enable-external-libs
	none – detected automatically

	enable-html-doc
	BUILD_DOC_HTML

	enable-implicit-crypto
	USE_IMPLICIT_CRYPTO

	enable-insecure-random
	USE_INSECURE_RANDOM

	enable-ld-version-script
	none – detected automatically

	enable-maintainer-mode
	MAINTAINER_MODE (slight differences)

	enable-os-secure-random (on by default)
	SKIP_OS_SECURE_RANDOM (off by default)

	enable-oss-fuzz
	OSS_FUZZ

	enable-pdf-doc
	BUILD_DOC_PDF

	enable-rpath
	none – cmake handles rpath correctly

	enable-show-failed-test-output
	SHOW_FAILED_TEST_OUTPUT

	enable-test-compare-images
	set the QPDF_TEST_COMPARE_IMAGES environment variable

	enable-werror
	WERROR

	with-buildrules
	none – not relevant to cmake

	with-default-crypto
	DEFAULT_CRYPTO

	large-file-test-path
	set the QPDF_LARGE_FILE_TEST_PATH environment variable

 Previous
 Next

 © Copyright 2005-2023, Jay Berkenbilt.
 Revision 57dcf6d9.

 Built with Sphinx using a
 theme
 provided by Read the Docs.

 Read the Docs
 v: 11.3

 	Versions
	latest
	stable
	11.3
	11.2
	11.1
	11.0
	10.6
	10.5
	doc-check

 	Downloads

 	On Read the Docs
	
 Project Home

	
 Builds

