

 QPDF

 11.1

 Contents:

	What is QPDF?
	License
	Downloading QPDF
	Building and Installing QPDF
	Notes for Packagers
	Running qpdf
	QDF Mode
	Using the QPDF Library
	Weak Cryptography
	qpdf JSON
	Contributing to qpdf
	Design and Library Notes
	QPDFJob: a Job-Based Interface
	Linearization	Basic Strategy for Linearization
	Preparing For Linearization
	Optimization
	Writing Linearized Files
	Calculating Linearization Data
	Known Issues with Linearization
	Debugging Note

	Object and Cross-Reference Streams
	PDF Encryption
	Release Notes
	Acknowledgments

 QPDF

 	 »
	Linearization
	
 Edit on GitHub

Linearization

This chapter describes how QPDF and QPDFWriter implement
creation and processing of linearized PDFS.

Basic Strategy for Linearization

To avoid the incestuous problem of having the qpdf library validate its
own linearized files, we have a special linearized file checking mode
which can be invoked via qpdf
--check-linearization (or qpdf
--check). This mode reads the linearization parameter
dictionary and the hint streams and validates that object ordering,
parameters, and hint stream contents are correct. The validation code
was first tested against linearized files created by external tools
(Acrobat and pdlin) and then used to validate files created by
QPDFWriter itself.

Preparing For Linearization

Before creating a linearized PDF file from any other PDF file, the PDF
file must be altered such that all page attributes are propagated down
to the page level (and not inherited from parents in the /Pages
tree). We also have to know which objects refer to which other objects,
being concerned with page boundaries and a few other cases. We refer to
this part of preparing the PDF file as
optimization, discussed in
Optimization. Note the, in this context, the
term optimization is a qpdf term, and the
term linearization is a term from the PDF
specification. Do not be confused by the fact that many applications
refer to linearization as optimization or web optimization.

When creating linearized PDF files from optimized PDF files, there are
really only a few issues that need to be dealt with:

	Creation of hints tables

	Placing objects in the correct order

	Filling in offsets and byte sizes

Optimization

In order to perform various operations such as linearization and
splitting files into pages, it is necessary to know which objects are
referenced by which pages, page thumbnails, and root and trailer
dictionary keys. It is also necessary to ensure that all page-level
attributes appear directly at the page level and are not inherited from
parents in the pages tree.

We refer to the process of enforcing these constraints as
optimization. As mentioned above, note
that some applications refer to linearization as optimization. Although
this optimization was initially motivated by the need to create
linearized files, we are using these terms separately.

PDF file optimization is implemented in the
QPDF_optimization.cc source file. That file
is richly commented and serves as the primary reference for the
optimization process.

After optimization has been completed, the private member variables
obj_user_to_objects and object_to_obj_users in QPDF have
been populated. Any object that has more than one value in the
object_to_obj_users table is shared. Any object that has exactly one
value in the object_to_obj_users table is private. To find all the
private objects in a page or a trailer or root dictionary key, one
merely has make this determination for each element in the
obj_user_to_objects table for the given page or key.

Note that pages and thumbnails have different object user types, so the
above test on a page will not include objects referenced by the page’s
thumbnail dictionary and nothing else.

Writing Linearized Files

We will create files with only primary hint streams. We will never write
overflow hint streams. (As of PDF version 1.4, Acrobat doesn’t either,
and they are never necessary.) The hint streams contain offset
information to objects that point to where they would be if the hint
stream were not present. This means that we have to calculate all object
positions before we can generate and write the hint table. This means
that we have to generate the file in two passes. To make this reliable,
QPDFWriter in linearization mode invokes exactly the same code twice
to write the file to a pipeline.

In the first pass, the target pipeline is a count pipeline chained to a
discard pipeline. The count pipeline simply passes its data through to
the next pipeline in the chain but can return the number of bytes passed
through it at any intermediate point. The discard pipeline is an end of
line pipeline that just throws its data away. The hint stream is not
written and dummy values with adequate padding are stored in the first
cross reference table, linearization parameter dictionary, and /Prev key
of the first trailer dictionary. All the offset, length, object
renumbering information, and anything else we need for the second pass
is stored.

At the end of the first pass, this information is passed to the QPDF
class which constructs a compressed hint stream in a memory buffer and
returns it. QPDFWriter uses this information to write a complete
hint stream object into a memory buffer. At this point, the length of
the hint stream is known.

In the second pass, the end of the pipeline chain is a regular file
instead of a discard pipeline, and we have known values for all the
offsets and lengths that we didn’t have in the first pass. We have to
adjust offsets that appear after the start of the hint stream by the
length of the hint stream, which is known. Anything that is of variable
length is padded, with the padding code surrounding any writing code
that differs in the two passes. This ensures that changes to the way
things are represented never results in offsets that were gathered
during the first pass becoming incorrect for the second pass.

Using this strategy, we can write linearized files to a non-seekable
output stream with only a single pass to disk or wherever the output is
going.

Calculating Linearization Data

Once a file is optimized, we have information about which objects access
which other objects. We can then process these tables to decide which
part (as described in “Linearized PDF Document Structure” in the PDF
specification) each object is contained within. This tells us the exact
order in which objects are written. The QPDFWriter class asks for
this information and enqueues objects for writing in the proper order.
It also turns on a check that causes an exception to be thrown if an
object is encountered that has not already been queued. (This could
happen only if there were a bug in the traversal code used to calculate
the linearization data.)

Known Issues with Linearization

There are a handful of known issues with this linearization code. These
issues do not appear to impact the behavior of linearized files which
still work as intended: it is possible for a web browser to begin to
display them before they are fully downloaded. In fact, it seems that
various other programs that create linearized files have many of these
same issues. These items make reference to terminology used in the
linearization appendix of the PDF specification.

	Thread Dictionary information keys appear in part 4 with the rest of
Threads instead of in part 9. Objects in part 9 are not grouped
together functionally.

	We are not calculating numerators for shared object positions within
content streams or interleaving them within content streams.

	We generate only page offset, shared object, and outline hint tables.
It would be relatively easy to add some additional tables. We gather
most of the information needed to create thumbnail hint tables. There
are comments in the code about this.

Debugging Note

The qpdf --show-linearization command can show
the complete contents of linearization hint streams. To look at the raw
data, you can extract the filtered contents of the linearization hint
tables using qpdf --show-object=n
--filtered-stream-data. Then, to convert this into a bit
stream (since linearization tables are bit streams written without
regard to byte boundaries), you can pipe the resulting data through the
following perl code:

use bytes;
binmode STDIN;
undef $/;
my $a = <STDIN>;
my @ch = split(//, $a);
map { printf("%08b", ord($_)) } @ch;
print "\n";

 Previous
 Next

 © Copyright 2005-2022, Jay Berkenbilt.
 Revision 236a02d4.

 Built with Sphinx using a
 theme
 provided by Read the Docs.

 Read the Docs
 v: 11.1

 	Versions
	latest
	stable
	11.1
	11.0
	10.6
	10.5
	doc-check

 	Downloads
	pdf
	html
	epub

 	On Read the Docs
	
 Project Home

	
 Builds

