

 QPDF

 11.1

 Contents:

	What is QPDF?
	License
	Downloading QPDF
	Building and Installing QPDF
	Notes for Packagers
	Running qpdf
	QDF Mode
	Using the QPDF Library
	Weak Cryptography
	qpdf JSON
	Contributing to qpdf	Source Repository
	Code Formatting
	Automated Tests	Coverage

	Personal Comments

	Design and Library Notes
	QPDFJob: a Job-Based Interface
	Linearization
	Object and Cross-Reference Streams
	PDF Encryption
	Release Notes
	Acknowledgments

 QPDF

 	 »
	Contributing to qpdf
	
 Edit on GitHub

Contributing to qpdf

Source Repository

The qpdf source code lives at https://github.com/qpdf/qpdf.

Create issues (bug reports, feature requests) at
https://github.com/qpdf/qpdf/issues. If you have a general question or
topic for discussion, you can create a discussion at
https://github.com/qpdf/qpdf/discussions.

Code Formatting

The qpdf source code is formatting using clang-format ≥ version 15
with a .clang-format file at the top of the source tree. The
format-code script reformats all the source code in the
repository. You must have clang-format in your path, and it must be
at least version 15.

For emacs users, the .dir-locals.el file configures emacs
cc-mode for an indentation style that is similar to but not
exactly like what clang-format produces. When there are
differences, clang-format is authoritative. It is not possible to
make cc-mode and clang-format exactly match since the syntax
parser in emacs is not as sophisticated.

Blocks of code that should not be formatted can be surrounded by the
comments // clang-format off and // clang-format on. Sometimes
clang-format tries to combine lines in ways that are undesirable. In
this case, we follow a convention of adding a comment //
line-break on its own line.

For exact details, consult .clang-format. Here is a broad,
partial summary of the formatting rules:

	Use spaces, not tabs.

	Keep lines to 80 columns when possible.

	Braces are on their own lines after classes and functions (and
similar top-level constructs) and are compact otherwise.

	Closing parentheses are attached to the previous material, not not
their own lines.

The README-maintainer file has a few additional notes that are
probably not important to anyone who is not making deep changes to
qpdf.

Automated Tests

The testing style of qpdf has evolved over time. More recent tests
call assert(). Older tests print stuff to standard output and
compare the output against reference files. Many tests are a mixture
of these techniques.

The qtest style of testing is to
test everything through the application. So effectively most testing
is “integration testing” or “end-to-end testing”.

For details about qtest, consult the QTest Manual. As you read
it, keep in mind that, in spite of the recent date on the file, the
vast majority of that documentation is from before 2007 and predates
many test frameworks and approaches that are in use today.

Notes on testing:

	In most cases, things in the code are tested through integration
tests, though the test suite is very thorough. Many tests are driven
through the qpdf CLI. Others are driven through other files in
the qpdf directory, especially test_driver.cc and
qpdf-ctest.c. These programs only use the public API.

	In some cases, there are true “unit tests”, but they are exercised
through various stand-alone programs that exercise the library in
particular ways, including some that have access to library
internals. These are in the libtests directory.

Coverage

You wil see calls to QTC::TC throughout the code. This is a
“manual coverage” system described in depth in the qtest documentation
linked above. It works by ensuring that QTC::TC is called sometime
during the test in each configured way. In brief:

	QTC::TC takes two mandatory options and an optional one:

	The first two arguments must be string literals. This is because
qtest finds coverage cases lexically.

	The first argument is the scope name, usually qpdf. This means
there is a qpdf.testcov file in the source directory.

	The second argument is a case name. Each case name appears in
qpdf.testcov with a number after it, usually 0.

	If the third argument is present, it is a number. qtest
ensures that the QTC::TC is called for that scope and case at
least once with the third argument set to every value from 0
to n inclusive, where n is the number after the coverage
call.

	QTC::TC does nothing unless certain environment variables are
set. Therefore, QTC:TC calls should have no side effects. (In
some languages, they may be disabled at compile-time, though qpdf
does not actually do this.)

So, for example, if you have this code:

QTC::TC("qpdf", "QPDF eof skipping spaces before xref",
 skipped_space ? 0 : 1);

and this line in qpdf.testcov:

QPDF eof skipping spaces before xref 1

the test suite will only pass if that line of code was called at least
once with skipped_space == 0 and at least once with skipped_space
== 1.

The manual coverage approach ensures the reader that certain
conditions were covered in testing. Use of QTC::TC is only part of
the overall strategy.

I do not require testing on pull requests, but they are appreciated,
and I will not merge any code that is not tested. Often someone will
submit a pull request that is not adequately tested but is a good
contribution. In those cases, I will often take the code, add it with
tests, and accept the changes that way rather than merging the pull
request as submitted.

Personal Comments

QPDF started as a work project in 2002. The first open source release
was in 2008. While there have been a handful of contributors, the vast
majority of the code was written by one person over many years as a
side project.

I maintain a very strong commitment to backward compatibility. As
such, there are many aspects of the code that are showing their age.
While I believe the codebase to have high quality, there are things
that I would do differently if I were doing them from scratch today.
Sometimes people will suggest changes that I like but can’t accept for
backward compatibility reasons.

While I welcome contributions and am eager to collaborate with
contributors, I have a high bar. I only accept things I’m willing to
maintain over the long haul, and I am happy to help people get
submissions into that state.

 Previous
 Next

 © Copyright 2005-2022, Jay Berkenbilt.
 Revision 236a02d4.

 Built with Sphinx using a
 theme
 provided by Read the Docs.

 Read the Docs
 v: 11.1

 	Versions
	latest
	stable
	11.1
	11.0
	10.6
	10.5
	doc-check

 	Downloads
	pdf
	html
	epub

 	On Read the Docs
	
 Project Home

	
 Builds

