

 QPDF

 11.0

 Contents:

	What is QPDF?
	License
	Downloading QPDF
	Building and Installing QPDF
	Notes for Packagers
	Running qpdf
	QDF Mode
	Using the QPDF Library	Using QPDF from C++
	Using QPDF from other languages
	A Note About Unicode File Names

	Weak Cryptography
	qpdf JSON
	Contributing to qpdf
	Design and Library Notes
	QPDFJob: a Job-Based Interface
	Linearization
	Object and Cross-Reference Streams
	PDF Encryption
	Release Notes
	Acknowledgments

 QPDF

 	 »
	Using the QPDF Library
	
 Edit on GitHub

Using the QPDF Library

Using QPDF from C++

The source tree for the qpdf package has an
examples directory that contains a few
example programs. The libqpdf/QPDFJob.cc source
file also serves as a useful example since it exercises almost all of
the qpdf library’s public interface. The best source of documentation on
the library itself is reading comments in
include/qpdf/QPDF.hh,
include/qpdf/QPDFWriter.hh, and
include/qpdf/QPDFObjectHandle.hh.

All header files are installed in the
include/qpdf directory. It is recommend that
you use #include <qpdf/QPDF.hh> rather than adding
include/qpdf to your include path.

qpdf installs a pkg-config configuration with package name
libqpdf and a cmake configuration with package name qpdf.
The libqpdf target is exported in the qpdf:: namespace. The
following is an example of a CMakeLists.txt file for a
single-file executable that links with qpdf:

cmake_minimum_required(VERSION 3.16)
project(some-application LANGUAGES CXX)
find_package(qpdf)
add_executable(some-application some-application.cc)
target_link_libraries(some-application qpdf::libqpdf)

The qpdf library is safe to use in a multithreaded program, but no
individual QPDF object instance (including QPDF,
QPDFObjectHandle, or QPDFWriter) can be used in more than one
thread at a time. Multiple threads may simultaneously work with
different instances of these and all other QPDF objects.

Using QPDF from other languages

The qpdf library is implemented in C++, which makes it hard to use
directly in other languages. There are a few things that can help.

	“C”
	The qpdf library includes a “C” language interface that provides a
subset of the overall capabilities. The header file
qpdf/qpdf-c.h includes information about
its use. As long as you use a C++ linker, you can link C programs
with qpdf and use the C API. For languages that can directly load
methods from a shared library, the C API can also be useful. People
have reported success using the C API from other languages on Windows
by directly calling functions in the DLL.

	Python
	A Python module called
pikepdf provides a clean and
highly functional set of Python bindings to the qpdf library. Using
pikepdf, you can work with PDF files in a natural way and combine
qpdf’s capabilities with other functionality provided by Python’s
rich standard library and available modules.

	Other Languages Starting with version 11.0.0, the qpdf
	command-line tool can produce an unambiguous JSON representation of
a PDF file and can also create or update PDF files using this JSON
representation. qpdf versions from 8.3.0 through 10.6.3 had a more
limited JSON output format. The qpdf JSON format makes it possible
to inspect and modify the structure of a PDF file down to the
object level from the command-line or from any language that can
handle JSON data. Please see qpdf JSON for details.

	Wrappers
	The qpdf Wiki contains a
list of Wrappers around qpdf. These may
have varying degrees of functionality or completeness. If you know
of (or have written) a wrapper that you’d like include, open an
issue at https://github.com/qpdf/qpdf/issues/new and ask for it to
be added to the list.

A Note About Unicode File Names

When strings are passed to qpdf library routines either as char* or
as std::string, they are treated as byte arrays except where
otherwise noted. When Unicode is desired, qpdf wants UTF-8 unless
otherwise noted in comments in header files. In modern UNIX/Linux
environments, this generally does the right thing. In Windows, it’s a
bit more complicated. Starting in qpdf 8.4.0, passwords that contain
Unicode characters are handled much better, and starting in qpdf 8.4.1,
the library attempts to properly handle Unicode characters in filenames.
In particular, in Windows, if a UTF-8 encoded string is used as a
filename in either QPDF or QPDFWriter, it is internally
converted to wchar_t*, and Unicode-aware Windows APIs are used. As
such, qpdf will generally operate properly on files with non-ASCII
characters in their names as long as the filenames are UTF-8 encoded for
passing into the qpdf library API, but there are still some rough edges,
such as the encoding of the filenames in error messages or CLI output
messages. Patches or bug reports are welcome for any continuing issues
with Unicode file names in Windows.

 Previous
 Next

 © Copyright 2005-2022, Jay Berkenbilt.
 Revision 1393f56e.

 Built with Sphinx using a
 theme
 provided by Read the Docs.

 Read the Docs
 v: 11.0

 	Versions
	latest
	stable
	11.0
	10.6
	10.5
	doc-check

 	Downloads

 	On Read the Docs
	
 Project Home

	
 Builds

