
QPDF
Release 10.6.3

Jay Berkenbilt

Mar 12, 2022

CONTENTS:

1 What is QPDF? 3

2 License 5

3 Downloading QPDF 7

4 Building and Installing QPDF 9
4.1 System Requirements . 9
4.2 Build Instructions . 10
4.3 Building Documentation . 10
4.4 Crypto Providers . 10

5 Notes for Packagers 13
5.1 Build Options . 13
5.2 Packaging Documentation . 13

6 Running qpdf 15
6.1 Basic Invocation . 15
6.2 Exit Status . 16
6.3 Shell Completion . 17
6.4 Help/Information . 17
6.5 General Options . 18
6.6 Advanced Control Options . 19
6.7 PDF Transformation . 20
6.8 Page Ranges . 25
6.9 PDF Modification . 25
6.10 Encryption . 28
6.11 Page Selection . 32
6.12 Overlay and Underlay . 34
6.13 Embedded Files/Attachments . 35
6.14 PDF Inspection . 37
6.15 JSON Options . 39
6.16 Options for Testing or Debugging . 40
6.17 Unicode Passwords . 41

7 QDF Mode 43

8 Using the QPDF Library 45
8.1 Using QPDF from C++ . 45
8.2 Using QPDF from other languages . 45
8.3 A Note About Unicode File Names . 46

i

9 Weak Cryptography 47

10 QPDF JSON 49
10.1 Overview . 49
10.2 JSON Guarantees . 49
10.3 Limitations of JSON Representation . 50
10.4 JSON: Special Considerations . 50

11 Design and Library Notes 53
11.1 Introduction . 53
11.2 Design Goals . 53
11.3 Helper Classes . 54
11.4 Implementation Notes . 55
11.5 Casting Policy . 57
11.6 Encryption . 57
11.7 Random Number Generation . 58
11.8 Adding and Removing Pages . 59
11.9 Reserving Object Numbers . 59
11.10 Copying Objects From Other PDF Files . 59
11.11 Writing PDF Files . 60
11.12 Filtered Streams . 61
11.13 Object Accessor Methods . 61
11.14 Smart Pointers . 62

12 QPDFJob: a Job-Based Interface 69
12.1 QPDFJob Design . 71

13 Linearization 73
13.1 Basic Strategy for Linearization . 73
13.2 Preparing For Linearization . 73
13.3 Optimization . 73
13.4 Writing Linearized Files . 74
13.5 Calculating Linearization Data . 74
13.6 Known Issues with Linearization . 75
13.7 Debugging Note . 75

14 Object and Cross-Reference Streams 77
14.1 Object Streams . 77
14.2 Cross-Reference Streams . 78
14.3 Implications for Linearized Files . 79
14.4 Implementation Notes . 79

15 PDF Encryption 81
15.1 PDF Encryption Concepts . 81
15.2 PDF Encryption Details . 82
15.3 PDF Security Restrictions . 83
15.4 How qpdf handles security restrictions . 84
15.5 User and Owner Passwords . 85

16 Release Notes 87

17 Acknowledgments 121

18 Indices 123

qpdf Command-line Options 125

ii

QPDF, Release 10.6.3

Welcome to the QPDF documentation! For the latest version of this documentation, please visit https://qpdf.
readthedocs.io.

CONTENTS: 1

https://qpdf.readthedocs.io
https://qpdf.readthedocs.io

QPDF, Release 10.6.3

2 CONTENTS:

CHAPTER

ONE

WHAT IS QPDF?

QPDF is a program and C++ library for structural, content-preserving transformations on PDF files. QPDF’s website is
located at https://qpdf.sourceforge.io/. QPDF’s source code is hosted on github at https://github.com/qpdf/qpdf. You
can find the latest version of this documentation at https://qpdf.readthedocs.io/.

QPDF provides many useful capabilities to developers of PDF-producing software or for people who just want to look
at the innards of a PDF file to learn more about how they work. With QPDF, it is possible to copy objects from one PDF
file into another and to manipulate the list of pages in a PDF file. This makes it possible to merge and split PDF files.
The QPDF library also makes it possible for you to create PDF files from scratch. In this mode, you are responsible
for supplying all the contents of the file, while the QPDF library takes care of all the syntactical representation of the
objects, creation of cross references tables and, if you use them, object streams, encryption, linearization, and other
syntactic details. You are still responsible for generating PDF content on your own.

QPDF has been designed with very few external dependencies, and it is intentionally very lightweight. QPDF is not a
PDF content creation library, a PDF viewer, or a program capable of converting PDF into other formats. In particular,
QPDF knows nothing about the semantics of PDF content streams. If you are looking for something that can do that,
you should look elsewhere. However, once you have a valid PDF file, QPDF can be used to transform that file in ways
that perhaps your original PDF creation tool can’t handle. For example, many programs generate simple PDF files but
can’t password-protect them, web-optimize them, or perform other transformations of that type.

This documentation aims to be comprehensive, but there is also a wiki for less polished material and ongoing work.

3

https://qpdf.sourceforge.io/
https://github.com/qpdf/qpdf
https://qpdf.readthedocs.io/
https://github.com/qpdf/qpdf/wiki

QPDF, Release 10.6.3

4 Chapter 1. What is QPDF?

CHAPTER

TWO

LICENSE

QPDF is licensed under the Apache License, Version 2.0 (the “License”). Unless required by applicable law or agreed
to in writing, software distributed under the License is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES
OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing
permissions and limitations under the License.

5

http://www.apache.org/licenses/LICENSE-2.0

QPDF, Release 10.6.3

6 Chapter 2. License

CHAPTER

THREE

DOWNLOADING QPDF

QPDF is included in most Linux distributions. Native packages are available for many other operating systems as well.

Other resources:

• GitHub release page

• GitHub project

• QPDF project web site

7

https://github.com/qpdf/qpdf/releases/
https://github.com/qpdf/qpdf
https://qpdf.sourceforge.io

QPDF, Release 10.6.3

8 Chapter 3. Downloading QPDF

CHAPTER

FOUR

BUILDING AND INSTALLING QPDF

This chapter describes how to build and install qpdf. Please see also the README.md and INSTALL files in the source
distribution.

4.1 System Requirements

The qpdf package has few external dependencies. In order to build qpdf, the following packages are required:

• A C++ compiler that supports C++-14.

• zlib: http://www.zlib.net/

• jpeg: http://www.ijg.org/files/ or https://libjpeg-turbo.org/

• Recommended but not required: gnutls: https://www.gnutls.org/ to be able to use the gnutls crypto provider,
and/or openssl: https://openssl.org/ to be able to use the openssl crypto provider.

• gnu make 3.81 or newer: http://www.gnu.org/software/make

• perl version 5.8 or newer: http://www.perl.org/; required for running the test suite. Starting with qpdf version
9.1.1, perl is no longer required at runtime.

• GNU diffutils (any version): http://www.gnu.org/software/diffutils/ is required to run the test suite. Note that
this is the version of diff present on virtually all GNU/Linux systems. This is required because the test suite uses
diff -u.

Part of qpdf’s test suite does comparisons of the contents PDF files by converting them images and comparing the
images. The image comparison tests are disabled by default. Those tests are not required for determining correctness
of a qpdf build if you have not modified the code since the test suite also contains expected output files that are compared
literally. The image comparison tests provide an extra check to make sure that any content transformations don’t break
the rendering of pages. Transformations that affect the content streams themselves are off by default and are only
provided to help developers look into the contents of PDF files. If you are making deep changes to the library that cause
changes in the contents of the files that qpdf generate, then you should enable the image comparison tests. Enable them
by running configure with the --enable-test-compare-images flag. If you enable this, the following additional
requirements are required by the test suite. Note that in no case are these items required to use qpdf.

• libtiff: http://www.remotesensing.org/libtiff/

• GhostScript version 8.60 or newer: http://www.ghostscript.com

If you do not enable this, then you do not need to have tiff and ghostscript.

For information on building the documentation, see Building Documentation.

9

http://www.zlib.net/
http://www.ijg.org/files/
https://libjpeg-turbo.org/
https://www.gnutls.org/
https://openssl.org/
http://www.gnu.org/software/make
http://www.perl.org/
http://www.gnu.org/software/diffutils/
http://www.remotesensing.org/libtiff/
http://www.ghostscript.com

QPDF, Release 10.6.3

4.2 Build Instructions

Building qpdf on UNIX is generally just a matter of running

./configure
make

You can also run make check to run the test suite and make install to install. Please run ./configure --help for
options on what can be configured. You can also set the value of DESTDIR during installation to install to a temporary
location, as is common with many open source packages. Please see also the README.md and INSTALL files in the
source distribution.

Building on Windows is a little bit more complicated. For details, please see README-windows.md in the source
distribution. You can also download a binary distribution for Windows. There is a port of qpdf to Visual C++ version 6
in the contrib area generously contributed by Jian Ma. This is also discussed in more detail in README-windows.md.

While wchar_t is part of the C++ standard, qpdf uses it in only one place in the public API, and it’s just in a helper
function. It is possible to build qpdf on a system that doesn’t have wchar_t, and it’s also possible to compile a program
that uses qpdf on a system without wchar_t as long as you don’t call that one method. This is a very unusual situation.
For a detailed discussion, please see the top-level README.md file in qpdf’s source distribution.

There are some other things you can do with the build. Although qpdf uses autoconf, it does not use automake but
instead uses a hand-crafted non-recursive Makefile that requires gnu make. If you’re really interested, please read the
comments in the top-level Makefile.

4.3 Building Documentation

The qpdf manual is written in reStructured Text and built with Sphinx using the Read the Docs Sphinx Theme. In
order to build the HTML documentation from source, you need to install sphinx and the theme, which you can typi-
cally do with pip install sphinx sphinx_rtd_theme. To build the PDF version of the documentation, you need
pdflatex, latexmk, and a fairly complete LaTeX installation. Detailed requirements can be found in the Sphinx doc-
umentation. To see how the documentation is built for the qpdf distribution, refer to the build-scripts/build-doc
file in the qpdf source distribution.

4.4 Crypto Providers

Starting with qpdf 9.1.0, the qpdf library can be built with multiple implementations of providers of cryptographic
functions, which we refer to as “crypto providers.” At the time of writing, a crypto implementation must provide MD5
and SHA2 (256, 384, and 512-bit) hashes and RC4 and AES256 with and without CBC encryption. In the future, if
digital signature is added to qpdf, there may be additional requirements beyond this.

Starting with qpdf version 9.1.0, the available implementations are native and gnutls. In qpdf 10.0.0, openssl was
added. Additional implementations may be added if needed. It is also possible for a developer to provide their own
implementation without modifying the qpdf library.

10 Chapter 4. Building and Installing QPDF

https://www.sphinx-doc.org
https://sphinx-rtd-theme.readthedocs.io

QPDF, Release 10.6.3

4.4.1 Build Support For Crypto Providers

When building with qpdf’s build system, crypto providers can be enabled at build time using various ./configure
options. The default behavior is for ./configure to discover which crypto providers can be supported based on
available external libraries, to build all available crypto providers, and to use an external provider as the default over
the native one. This behavior can be changed with the following flags to ./configure:

• --enable-crypto-x (where x is a supported crypto provider): enable the x crypto provider, requiring any
external dependencies it needs

• --disable-crypto-x: disable the x provider, and do not link against its dependencies even if they are available

• --with-default-crypto=x: make x the default provider even if a higher priority one is available

• --disable-implicit-crypto: only build crypto providers that are explicitly requested with an
--enable-crypto-x option

For example, if you want to guarantee that the gnutls crypto provider is used and that the native provider is not built,
you could run ./configure --enable-crypto-gnutls --disable-implicit-crypto.

If you build qpdf using your own build system, in order for qpdf to work at all, you need to enable at least one crypto
provider. The file libqpdf/qpdf/qpdf-config.h.in provides macros DEFAULT_CRYPTO, whose value must be a
string naming the default crypto provider, and various symbols starting with USE_CRYPTO_, at least one of which
has to be enabled. Additionally, you must compile the source files that implement a crypto provider. To get a list of
those files, look at libqpdf/build.mk. If you want to omit a particular crypto provider, as long as its USE_CRYPTO_
symbol is undefined, you can completely ignore the source files that belong to a particular crypto provider. Additionally,
crypto providers may have their own external dependencies that can be omitted if the crypto provider is not used. For
example, if you are building qpdf yourself and are using an environment that does not support gnutls or openssl, you can
ensure that USE_CRYPTO_NATIVE is defined, USE_CRYPTO_GNUTLS is not defined, and DEFAULT_CRYPTO is defined
to "native". Then you must include the source files used in the native implementation, some of which were added or
renamed from earlier versions, to your build, and you can ignore QPDFCrypto_gnutls.cc. Always consult libqpdf/
build.mk to get the list of source files you need to build.

4.4.2 Runtime Crypto Provider Selection

You can use the --show-crypto option to qpdf to get a list of available crypto providers. The default provider is
always listed first, and the rest are listed in lexical order. Each crypto provider is listed on a line by itself with no other
text, enabling the output of this command to be used easily in scripts.

You can override which crypto provider is used by setting the QPDF_CRYPTO_PROVIDER environment variable. There
are few reasons to ever do this, but you might want to do it if you were explicitly trying to compare behavior of two
different crypto providers while testing performance or reproducing a bug. It could also be useful for people who are
implementing their own crypto providers.

4.4.3 Crypto Provider Information for Developers

If you are writing code that uses libqpdf and you want to force a certain crypto provider to be used, you can call
the method QPDFCryptoProvider::setDefaultProvider. The argument is the name of a built-in or developer-
supplied provider. To add your own crypto provider, you have to create a class derived from QPDFCryptoImpl and reg-
ister it with QPDFCryptoProvider. For additional information, see comments in include/qpdf/QPDFCryptoImpl.
hh.

4.4. Crypto Providers 11

QPDF, Release 10.6.3

4.4.4 Crypto Provider Design Notes

This section describes a few bits of rationale for why the crypto provider interface was set up the way it was. You don’t
need to know any of this information, but it’s provided for the record and in case it’s interesting.

As a general rule, I want to avoid as much as possible including large blocks of code that are conditionally compiled
such that, in most builds, some code is never built. This is dangerous because it makes it very easy for invalid code to
creep in unnoticed. As such, I want it to be possible to build qpdf with all available crypto providers, and this is the
way I build qpdf for local development. At the same time, if a particular packager feels that it is a security liability
for qpdf to use crypto functionality from other than a library that gets considerable scrutiny for this specific purpose
(such as gnutls, openssl, or nettle), then I want to give that packager the ability to completely disable qpdf’s native
implementation. Or if someone wants to avoid adding a dependency on one of the external crypto providers, I don’t
want the availability of the provider to impose additional external dependencies within that environment. Both of these
are situations that I know to be true for some users of qpdf.

I want registration and selection of crypto providers to be thread-safe, and I want it to work deterministically for a devel-
oper to provide their own crypto provider and be able to set it up as the default. This was the primary motivation behind
requiring C++-11 as doing so enabled me to exploit the guaranteed thread safety of local block static initialization. The
QPDFCryptoProvider class uses a singleton pattern with thread-safe initialization to create the singleton instance of
QPDFCryptoProvider and exposes only static methods in its public interface. In this way, if a developer wants to
call any QPDFCryptoProvider methods, the library guarantees the QPDFCryptoProvider is fully initialized and all
built-in crypto providers are registered. Making QPDFCryptoProvider actually know about all the built-in providers
may seem a bit sad at first, but this choice makes it extremely clear exactly what the initialization behavior is. There’s
no question about provider implementations automatically registering themselves in a nondeterministic order. It also
means that implementations do not need to know anything about the provider interface, which makes them easier to
test in isolation. Another advantage of this approach is that a developer who wants to develop their own crypto provider
can do so in complete isolation from the qpdf library and, with just two calls, can make qpdf use their provider in their
application. If they decided to contribute their code, plugging it into the qpdf library would require a very small change
to qpdf’s source code.

The decision to make the crypto provider selectable at runtime was one I struggled with a little, but I decided to do
it for various reasons. Allowing an end user to switch crypto providers easily could be very useful for reproducing a
potential bug. If a user reports a bug that some cryptographic thing is broken, I can easily ask that person to try with
the QPDF_CRYPTO_PROVIDER variable set to different values. The same could apply in the event of a performance
problem. This also makes it easier for qpdf’s own test suite to exercise code with different providers without having to
make every program that links with qpdf aware of the possibility of multiple providers. In qpdf’s continuous integration
environment, the entire test suite is run for each supported crypto provider. This is made simple by being able to select
the provider using an environment variable.

Finally, making crypto providers selectable in this way establish a pattern that I may follow again in the future for stream
filter providers. One could imagine a future enhancement where someone could provide their own implementations for
basic filters like /FlateDecode or for other filters that qpdf doesn’t support. Implementing the registration functions
and internal storage of registered providers was also easier using C++-11’s functional interfaces, which was another
reason to require C++-11 at this time.

12 Chapter 4. Building and Installing QPDF

CHAPTER

FIVE

NOTES FOR PACKAGERS

If you are packaging qpdf for an operating system distribution, this chapter is for you. Otherwise, feel free to skip.

5.1 Build Options

• Perl must be present at build time. Prior to qpdf version 9.1.1, there was a runtime dependency on perl, but this
is no longer the case.

• Make sure you are getting the intended behavior with regard to crypto providers. Read Build Support For Crypto
Providers for details.

• Passing --enable-show-failed-test-output to ./configurewill cause any failed test output to be written
to the console. This can be very useful for seeing test failures generated by autobuilders where you can’t access
qtest.log after the fact.

• If qpdf’s build environment detects the presence of autoconf and related tools, it will check to ensure that au-
tomatically generated files are up-to-date with recorded checksums and fail if it detects a discrepancy. This
feature is intended to prevent you from accidentally forgetting to regenerate automatic files after modifying their
sources. If your packaging environment automatically refreshes automatic files, it can cause this check to fail.
Suppress qpdf’s checks by passing --disable-check-autofiles to /.configure. This is safe since qpdf’s
autogen.sh just runs autotools in the normal way.

• QPDF’s make install does not install completion files by default, but as a packager, it’s good if you install them
wherever your distribution expects such files to go. You can find completion files to install in the completions
directory.

• Packagers are encouraged to install the source files from the examples directory along with qpdf development
packages.

5.2 Packaging Documentation

Starting in qpdf version 10.5, pre-built documentation is no longer distributed with the qpdf source distribution. Here
are a few options you may want to consider for your packages:

• Do nothing

When you run make install, the file README-doc.txt is installed in $(docdir). That file tells the reader
where to find the documentation online and where to go to download offline copies of the documentation. This
is the option selected by the debian packages.

• Embed pre-built documentation

13

QPDF, Release 10.6.3

You can obtain pre-built documentation and extract its contents into your distribution. This is what the Windows
binary distributions available from the qpdf release site do. You can find the pre-build documentation in the
release area in the file qpdf-version-doc.zip.

• Build the documentation yourself

You can build the documentation as part of your build process. Be sure to pass --enable-doc-maintenance
to ./configure, and install it with make doc-dist DOC_DEST=.... This is what the AppImage build does.
The latest version of Sphinx at the time of the initial conversion a sphinx-based documentation was 4.3.2. Older
versions are not guaranteed to work.

5.2.1 Documentation Packaging Rationale

This section describes the reason for things being the way they are. It’s for information only; you don’t have to know
any of this to package qpdf.

What is the reason for this change? Prior to qpdf 10.5, the qpdf manual was a docbook XML file. The generated
documents were the product of running the file through build-time style sheets and contained no copyrighted material
of their own. Starting with version 10.5, the manual is written produced with Sphinx. This change was made to make
it much easier to automatically generate portions of the documentation and to make the documentation easier to work
with. The HTML output of Sphinx is also much more readable, usable, and suitable for online consumption than the
output of the docbook style sheets. The downsides are that the generated HTML documentation now contains Javascript
code and embedded fonts, and the PDF version of the documentation is no longer as suitable for printing (at least as
of the 10.5 distribution) since external link targets are no longer shown and cross references no longer contain page
number information. The presence of copyrighted material in the generated documentation, even though things are
licensed with MIT and BSD licenses, complicates the job of the packager in various ways. For one thing, it means
the NOTICE.md file in the source repository would have to keep up with the copyright information for files that are not
controlled in the repository. Additionally, some distributions (notably Debian/Ubuntu) discourage inclusion of sphinx-
generated documentation in packages, preferring you instead to build the documentation as part of the package build
process and to depend at runtime on a shared package that contains the code. At the time of the conversion of the qpdf
manual from docbook to sphinx, newer versions of both sphinx and the html theme were required than were available
in some of most of the Debian/Ubuntu versions for which qpdf was packaged.

Since always-on Internet connectivity is much more common than it used to be, many users of qpdf would prefer to
consume the documentation online anyway, and the lack of pre-built documentation in the distribution won’t be as
big of a deal. However there are still some people who can’t or choose not to view documentation online. For them,
pre-built documentation is still available.

14 Chapter 5. Notes for Packagers

https://www.sphinx-doc.org

CHAPTER

SIX

RUNNING QPDF

This chapter describes how to run the qpdf program from the command line.

6.1 Basic Invocation

Usage: qpdf [infile] [options] [outfile]

The qpdf command reads the PDF file infile, applies various transformations or modifications to the file in memory,
and writes the result to outfile. When run with no options, the output file is functionally identical to the input file
but may be structurally reorganized, and orphaned objects are removed from the file. Many options are available for
applying transformations or modifications to the file.

infile can be a regular file, or it can be --empty to start with an empty PDF file. There is no way to use standard
input since the input file has to be seekable.

outfile can be a regular file, - to represent standard output, or --replace-input to indicate that the input file should
be overwritten. The output file does not have to be seekable, even when generating linearized files. You can also use
--split-pages to create separate output files for each page (or group of pages) instead of a single output file.

Password-protected files may be opened by specifying a password with --password .

All options other than help options (see Help/Information) require an input file. If inspection or JSON options (see
PDF Inspection and JSON Options) or help options are given, an output file must not be given. Otherwise, an output
file is required.

If @filename appears as a word anywhere in the command-line, it will be read line by line, and each line will be
treated as a command-line argument. Leading and trailing whitespace is intentionally not removed from lines, which
makes it possible to handle arguments that start or end with spaces. The @- option allows arguments to be read from
standard input. This allows qpdf to be invoked with an arbitrary number of arbitrarily long arguments. It is also very
useful for avoiding having to pass passwords on the command line, though see also --password-file. Note that the
@filename can’t appear in the middle of an argument, so constructs such as --arg=@filenamewill not work. Instead,
you would have to include the option and its parameter (e.g., --option=parameter) as a line in the filename file
and just pass @filename on the command line.

15

QPDF, Release 10.6.3

6.1.1 Related Options

--empty
This option may be given in place of infile. This causes qpdf to use a dummy input file that contains zero
pages. This option is useful in conjunction with --pages. See Page Selection for details.

--replace-input
This option may be given in place of outfile. This causes qpdf to replace the input file with the output. It does
this by writing to infilename.~qpdf-temp# and, when done, overwriting the input file with the temporary
file. If there were any warnings, the original input is saved as infilename.~qpdf-orig. If there are errors, the
input file is left untouched.

--job-json-file=file
Specify the name of a file whose contents are expected to contain a QPDFJob JSON file. This file is read and
treated as if the equivalent command-line arguments were supplied. It can be repeated and mixed freely with
other options. Run qpdf with --job-json-help for a description of the job JSON input file format. For more
information, see QPDFJob: a Job-Based Interface.

6.2 Exit Status

The exit status of qpdf may be interpreted as follows:

Table 1: Exit Codes
0 no errors or warnings were found
1 not used
2 errors were found; the file was not processed
3 warnings were found without errors

Notes:

• A PDF file may have problems that qpdf can’t detect.

• With the --warning-exit-0 option, exit status 0 is used even if there are warnings.

• qpdf does not exit with status 1 since the shell uses this exit code if it is unable to invoke the command.

• If both errors and warnings were found, exit status 2 is used.

• The --is-encrypted and --requires-password options use different exit codes. See their help for details.

6.2.1 Related Options

--warning-exit-0
If there were warnings only and no errors, exit with exit code 0 instead of 3. When combined with --no-warn,
the effect is for qpdf to completely ignore warnings.

16 Chapter 6. Running qpdf

QPDF, Release 10.6.3

6.3 Shell Completion

qpdf provides its own completion support for zsh and bash. You can enable bash completion with eval $(qpdf
--completion-bash) and zsh completion with eval $(qpdf --completion-zsh). If qpdf is not in your path,
you should use an absolute path to qpdf in the above invocation. If you invoke it with a relative path, it will warn you,
and the completion won’t work if you’re in a different directory.

qpdf will use argv[0] to figure out where its executable is. This may produce unwanted results in some cases, espe-
cially if you are trying to use completion with a copy of qpdf that is run directly out of the source tree or that is invoked
with a wrapper script. You can specify a full path to the qpdf you want to use for completion in the QPDF_EXECUTABLE
environment variable.

6.3.1 Related Options

--completion-bash
Output a completion command you can eval to enable shell completion from bash.

--completion-zsh
Output a completion command you can eval to enable shell completion from zsh.

6.4 Help/Information

Help options provide some information about qpdf itself. Help options are only valid as the first and only command-line
argument.

6.4.1 Related Options

--help[=--option|topic]
Display command-line invocation help. Use --help=--option for help on a specific option and --help=topic
for help on a help topic and also provides a list of available help topics.

--version
Display the version of qpdf. The version number displayed is the one that is compiled into the qpdf library. If
you don’t see the version number you expect, you may have more than one version of qpdf installed and may
not have your library path set up correctly.

--copyright
Display copyright and license information.

--show-crypto
Show a list of available crypto providers, each on a line by itself. The default provider is always listed first. See
Crypto Providers for more information about crypto providers.

6.3. Shell Completion 17

QPDF, Release 10.6.3

6.5 General Options

This section describes general options that control qpdf’s behavior. They are not necessarily related to the specific
operation that is being performed and may be used whether or not an output file is being created.

6.5.1 Related Options

--password=password
Specifies a password for accessing encrypted, password-protected files. To read the password from a file or
standard input, you can use --password-file.

Prior to 8.4.0, in the case of passwords that contain characters that fall outside of 7-bit US-ASCII, qpdf left the
burden of supplying properly encoded encryption and decryption passwords to the user. Starting in qpdf 8.4.0,
qpdf does this automatically in most cases. For an in-depth discussion, please see Unicode Passwords. Previous
versions of this manual described workarounds using the iconv command. Such workarounds are no longer
required or recommended starting with qpdf 8.4.0. However, for backward compatibility, qpdf attempts to detect
those workarounds and do the right thing in most cases.

--password-file=filename
Reads the first line from the specified file and uses it as the password for accessing encrypted files. filename
may be - to read the password from standard input, but if you do that the password is echoed and there is no
prompt, so use - with caution. Note that leading and trailing spaces are not stripped from the password.

--verbose
Increase verbosity of output. This includes information about files created, image optimization, and several other
operations. In some cases, it also displays additional information when inspection options (see PDF Inspection)
are used.

--progress
Indicate progress while writing output files. Progress indication does not start until writing starts, so there may
be a delay before progress indicators are seen if complicated transformations are being applied before the write
process begins.

--no-warn
Suppress writing of warnings to stderr. If warnings were detected and suppressed, qpdf will still exit with exit
code 3. To completely ignore warnings, also specify --warning-exit-0. Use with caution as qpdf is not
always successful in recovering from situations that cause warnings to be issued.

--deterministic-id
Generate a secure, random document ID using deterministic values. This prevents use of timestamp and output
file name information in the ID generation. Instead, at some slight additional runtime cost, the ID field is gen-
erated to include a digest of the significant parts of the content of the output PDF file. This means that a given
qpdf operation should generate the same ID each time it is run, which can be useful when caching results or for
generation of some test data. Use of this flag is not compatible with creation of encrypted files. This option can
be useful for testing. See also --static-id .

While qpdf will generate the same deterministic ID given the same output PDF, there is no guarantee that different
versions of qpdf will generate exactly the same PDF output for the same input and options. While care is taken
to avoid gratuitous changes to qpdf’s PDF generation, new versions of qpdf may include changes or bug fixes
that cause slightly different PDF code to be generated. Such changes are noted in the release notes.

--allow-weak-crypto
Starting with version 10.4, qpdf issues warnings when requested to create files using RC4 encryption. This option
suppresses those warnings. In future versions of qpdf, qpdf will refuse to create files with weak cryptography
when this flag is not given. See Weak Cryptography for additional details.

18 Chapter 6. Running qpdf

QPDF, Release 10.6.3

--keep-files-open=[y|n]
This option controls whether qpdf keeps individual files open while merging. By default, qpdf keeps files open
when merging unless more than 200 files are specified, in which case files are opened as needed and closed
when finished. Repeatedly opening and closing files may impose a large performance penalty with some file
systems, especially networked file systems. If you know that you have a large enough open file limit and are
suffering from performance problems, or if you have an open file limit smaller than 200, you can use this op-
tion to override the default behavior by specifying --keep-files-open=y to force qpdf to keep files open or
--keep-files-open=n to force it to only open files as needed. See also --keep-files-open-threshold .

Historical note: prior to version 8.1.0, qpdf always kept all files open, but this meant that the number of files that
could be merged was limited by the operating system’s open file limit. Version 8.1.0 opened files as they were
referenced and closed them after each read, but this caused a major performance impact. Version 8.2.0 optimized
the performance but did so in a way that, for local file systems, there was a small but unavoidable performance hit,
but for networked file systems the performance impact could be very high. The current behavior was introduced
in qpdf version 8.2.1.

--keep-files-open-threshold=count
If specified, overrides the default value of 200 used as the threshold for qpdf deciding whether or not to keep
files open. See --keep-files-open for details.

6.6 Advanced Control Options

Advanced control options control qpdf’s behavior in ways that would normally never be needed by a user but that may
be useful to developers or people investigating problems with specific files.

6.6.1 Related Options

--password-is-hex-key
Overrides the usual computation/retrieval of the PDF file’s encryption key from user/owner password with an
explicit specification of the encryption key. When this option is specified, the parameter to the --password
option is interpreted as a hexadecimal-encoded key value. This only applies to the password used to open the
main input file. It does not apply to other files opened by --pages or other options or to files being written.

Most users will never have a need for this option, and no standard viewers support this mode of operation, but
it can be useful for forensic or investigatory purposes. For example, if a PDF file is encrypted with an unknown
password, a brute-force attack using the key directly is sometimes more efficient than one using the password.
Also, if a file is heavily damaged, it may be possible to derive the encryption key and recover parts of the file
using it directly. To expose the encryption key used by an encrypted file that you can open normally, use the
--show-encryption-key option.

--suppress-password-recovery
Ordinarily, qpdf attempts to automatically compensate for passwords encoded with the wrong character encoding.
This option suppresses that behavior. Under normal conditions, there are no reasons to use this option. See
Unicode Passwords for a discussion.

--password-mode=mode
This option can be used to fine-tune how qpdf interprets Unicode (non-ASCII) password strings passed on the
command line. With the exception of the hex-bytes mode, these only apply to passwords provided when
encrypting files. The hex-bytes mode also applies to passwords specified for reading files. For additional
discussion of the supported password modes and when you might want to use them, see Unicode Passwords.
The following modes are supported:

• auto: Automatically determine whether the specified password is a properly encoded Unicode (UTF-8)
string, and transcode it as required by the PDF spec based on the type of encryption being applied. On

6.6. Advanced Control Options 19

QPDF, Release 10.6.3

Windows starting with version 8.4.0, and on almost all other modern platforms, incoming passwords will
be properly encoded in UTF-8, so this is almost always what you want.

• unicode: Tells qpdf that the incoming password is UTF-8, overriding whatever its automatic detection
determines. The only difference between this mode and auto is that qpdf will fail with an error message if
the password is not valid UTF-8 instead of falling back to bytes mode with a warning.

• bytes: Interpret the password as a literal byte string. For non-Windows platforms, this is what versions
of qpdf prior to 8.4.0 did. For Windows platforms, there is no way to specify strings of binary data on the
command line directly, but you can use a @filename option or --password-file to do it, in which case
this option forces qpdf to respect the string of bytes as provided. Note that this option may cause you to
encrypt PDF files with passwords that will not be usable by other readers.

• hex-bytes: Interpret the password as a hex-encoded string. This provides a way to pass binary data as
a password on all platforms including Windows. As with bytes, this option may allow creation of files
that can’t be opened by other readers. This mode affects qpdf’s interpretation of passwords specified for
decrypting files as well as for encrypting them. It makes it possible to specify strings that are encoded in
some manner other than the system’s default encoding.

--suppress-recovery
Prevents qpdf from attempting to reconstruct a file’s cross reference table when there are errors reading objects
from the file. Recovery is triggered by a variety of situations. While usually successful, it uses heuristics that
don’t work on all files. If this option is given, qpdf fails on the first error it encounters.

--ignore-xref-streams
Tells qpdf to ignore any cross-reference streams, falling back to any embedded cross-reference tables or triggering
document recovery. Ordinarily, qpdf reads cross-reference streams when they are present in a PDF file. If this
option is specified, qpdf will ignore any cross-reference streams for hybrid PDF files. The purpose of hybrid
files is to make some content available to viewers that are not aware of cross-reference streams. It is almost never
desirable to ignore them. The only time when you might want to use this feature is if you are testing creation of
hybrid PDF files and wish to see how a PDF consumer that doesn’t understand object and cross-reference streams
would interpret such a file.

6.7 PDF Transformation

The options discussed in this section tell qpdf to apply transformations that change the structure of a PDF file without
changing its content. Examples include creating linearized (web-optimized) files, adding or removing encryption,
restructuring files for older viewers, and rewriting files for human inspection. See also PDF Modification.

6.7.1 Related Options

--linearize
Create linearized (web-optimized) output files. Linearized files are formatted in a way that allows compliant
readers to begin displaying a PDF file before it is fully downloaded. Ordinarily, the entire file must be present
before it can be rendered because important cross-reference information typically appears at the end of the file.

--encrypt user-password owner-password key-length [options] --
This flag starts encryption options, used to create encrypted files. Please see Encryption for details.

--decrypt
Create an output file with no encryption even if the input file is encrypted. This option overrides the default
behavior of preserving whatever encryption was present on the input file. This functionality is not intended to
be used for bypassing copyright restrictions or other restrictions placed on files by their producers. See also
--copy-encryption.

20 Chapter 6. Running qpdf

QPDF, Release 10.6.3

--copy-encryption=file
Copy all encryption parameters, including the user password, the owner password, and all security restrictions,
from the specified file instead of preserving the encryption details from the input file. This works even if only
one of the user password or owner password is known. If the encryption file requires a password, use the
--encryption-file-password option to set it. Note that copying the encryption parameters from a file also
copies the first half of /ID from the file since this is part of the encryption parameters. This option can be use-
ful if you need to decrypt a file to make manual changes to it or to change it outside of qpdf, and then want to
restore the original encryption on the file without having to manual specify all the individual settings. See also
--decrypt.

--encryption-file-password=password
If the file specified with --copy-encryption requires a password, supply the password using this option. This
option is necessary because the --password option applies to the input file, not the file from which encryption
is being copied.

--qdf
Create a PDF file suitable for viewing and editing in a text editor. This is to edit the PDF code, not the page
contents. To edit a QDF file, your text editor must preserve binary data. In a QDF file, all streams that can be
uncompressed are uncompressed, and content streams are normalized, among other changes. The companion
tool fix-qdf can be used to repair hand-edited QDF files. QDF is a feature specific to the qpdf tool. For
additional information, see QDF Mode. Note that --linearize disables QDF mode.

QDF mode has full support for object streams, but sometimes it’s easier to locate a specific object if object
streams are disabled. When trying to understand some PDF construct by inspecting an existing file, it can be
useful to combine --qdf with --object-streams=disable.

This flag changes some of the defaults of other options: stream data is uncompressed, content streams are nor-
malized, and encryption is removed. These defaults can still be overridden by specifying the appropriate options
with --qdf. Additionally, in QDF mode, stream lengths are stored as indirect objects, objects are formatted in a
less efficient but more readable fashion, and the documents are interspersed with comments that make it easier
for the user to find things and also make it possible for fix-qdf to work properly. When editing QDF files, it is
not necessary to maintain the object formatting.

When normalizing content, if qpdf runs into any lexical errors, it will print a warning indicating that
content may be damaged. If you want to create QDF files without content normalization, specify
--qdf --normalize-content=n. You can also create a non-QDF file with uncompressed streams using
--stream-data=uncompress. Either option will uncompress all the streams but will not attempt to normal-
ize content. Please note that if you are using content normalization or QDF mode for the purpose of manually
inspecting files, you don’t have to care about this.

See also --no-original-object-ids.

--no-original-object-ids
Suppresses inclusion of original object ID comments in QDF files. This can be useful when generating QDF files
for test purposes, particularly when comparing them to determine whether two PDF files have identical content.
The original object ID comment is there by default because it makes it easier to trace objects back to the original
file.

--compress-streams=[y|n]
By default, or with --compress-streams=y, qpdf will compress streams using the flate compression algorithm
(used by zip and gzip) unless those streams are compressed in some other way. This analysis is made after qpdf
attempts to uncompress streams and is therefore closely related to --decode-level. To suppress this behavior
and leave streams streams uncompressed, use --compress-streams=n. In QDF mode (see QDF Mode and
--qdf), the default is to leave streams uncompressed.

--decode-level=parameter
Controls which streams qpdf tries to decode. The default is generalized.

The following values for parameter are available:

6.7. PDF Transformation 21

QPDF, Release 10.6.3

• none: do not attempt to decode any streams

• generalized: decode streams filtered with supported generalized filters: /LZWDecode, /FlateDecode,
/ASCII85Decode, and /ASCIIHexDecode. We define generalized filters as those to be used for general-
purpose compression or encoding, as opposed to filters specifically designed for image data.

• specialized: in addition to generalized, decode streams with supported non-lossy specialized filters;
currently this is just /RunLengthDecode

• all: in addition to generalized and specialized, decode streams with supported lossy filters; currently this
is just /DCTDecode (JPEG)

There are several filters that qpdf does not support. These are left untouched regardless of the option. Future
versions of qpdf may support additional filters.

Because the default value is generalized, qpdf’s default behavior is to uncompress any stream that is encoded
using non-lossy filters that qpdf understands. If --compress-streams=y is also in effect, which is the default
(see --compress-streams), the overall effect is that qpdf will recompress streams with generalized filters using
flate compression, effectively eliminating LZW and ASCII-based filters. This is usually desirable behavior but
can be disabled with --decode-level=none.

As a special case, streams already compressed with /FlateDecode are not uncompressed and recompressed.
You can change this behavior with --recompress-flate.

--stream-data=parameter
Controls transformation of stream data. This option predates the --compress-streams and --decode-level
options. Those options can be used to achieve the same effect with more control. The value of parameter may
be one of the following:

• compress: recompress stream data when possible (default); equivalent to --compress-streams=y
--decode-level=generalized. Does not recompress streams already compressed with /FlateDecode
unless --recompress-flate is also specified.

• preserve: leave all stream data as is; equivalent to --compress-streams=n --decode-level=none

• uncompress: uncompress stream data compressed with generalized filters when possible; equivalent to
--compress-streams=n --decode-level=generalized

--recompress-flate
The default generalized compression scheme used by PDF is flate (/FlateDecode), which is the same as used
by zip and gzip. Usually qpdf just leaves these alone. This option tells qpdf to uncompress and recompress
streams compressed with flate. This can be useful when combined with --compression-level. Using this
option may make qpdf much slower when writing output files.

--compression-level=level
When writing new streams that are compressed with /FlateDecode, use the specified compression level. The
value of level should be a number from 1 to 9 and is passed directly to zlib, which implements deflate com-
pression. Lower numbers compress less and are faster; higher numbers compress more and are slower. Note that
qpdf doesn’t uncompress and recompress streams compressed with flate by default. To have this option apply to
already compressed streams, you should also specify --recompress-flate. If your goal is to shrink the size
of PDF files, you should also use --object-streams=generate. If you omit this option, qpdf defers to the
compression library’s default behavior.

--normalize-content=[y|n]
Enables or disables normalization of newlines in PDF content streams to UNIX-style newlines, which is useful
for viewing files in a programmer-friendly text edit across multiple platforms. Content normalization is off by
default, but is automatically enabled by --qdf (see also QDF Mode). It is not recommended to use this option for
production use. If qpdf runs into any lexical errors while normalizing content, it will print a warning indicating
that content may be damaged.

22 Chapter 6. Running qpdf

QPDF, Release 10.6.3

--object-streams=mode
Controls handling of object streams. The value of mode may be one of the following:

Table 2: Object Stream Modes
preserve preserve original object streams, if any (the default)
disable create output files with no object streams
generate create object streams, and compress objects when possible

Object streams are PDF streams that contain other objects. Putting objects into object streams allows the PDF
objects themselves to be compressed, which can result in much smaller PDF files. Combining this option with
--compression-level and --recompress-flate can often result in the creation of smaller PDF files.

Object streams, also known as compressed objects, were introduced into the PDF specification at version 1.5
around 2003. Some ancient PDF viewers may not support files with object streams. qpdf can be used to transform
files with object streams into files without object streams or vice versa.

In preserve mode, the relationship between objects and the streams that contain them is preserved from the
original file. If the file has no object streams, qpdf will not add any. In disable mode, all objects are written as
regular, uncompressed objects. The resulting file should be structurally readable by older PDF viewers, though
there is still a chance that the file may contain other content that some older readers can’t support. In generate
mode, qpdf will create its own object streams. This will usually result in more compact PDF files. In this mode,
qpdf will also make sure the PDF version number in the header is at least 1.5.

--preserve-unreferenced
Tells qpdf to preserve objects that are not referenced when writing the file. Ordinarily any object that is not
referenced in a traversal of the document from the trailer dictionary will be discarded. Disabling this default
behavior may be useful in working with some damaged files or inspecting files with known unreferenced objects.

This flag is ignored for linearized files and has the effect of causing objects in the new file to be written ordered
by object ID from the original file. This does not mean that object numbers will be the same since qpdf may
create stream lengths as direct or indirect differently from the original file, and the original file may have gaps in
its numbering.

See also --preserve-unreferenced-resources, which does something completely different.

--remove-unreferenced-resources=parameter
Parameters: auto (the default), yes, or no.

Starting with qpdf 8.1, when splitting pages, qpdf is able to attempt to remove images and fonts that are not used
by a page even if they are referenced in the page’s resources dictionary. When shared resources are in use, this
behavior can greatly reduce the file sizes of split pages, but the analysis is very slow. In versions from 8.1 through
9.1.1, qpdf did this analysis by default. Starting in qpdf 10.0.0, if auto is used, qpdf does a quick analysis of
the file to determine whether the file is likely to have unreferenced objects on pages, a pattern that frequently
occurs when resource dictionaries are shared across multiple pages and rarely occurs otherwise. If it discovers
this pattern, then it will attempt to remove unreferenced resources. Usually this means you get the slower splitting
speed only when it’s actually going to create smaller files. You can suppress removal of unreferenced resources
altogether by specifying no or force qpdf to do the full algorithm by specifying yes.

Other than cases in which you don’t care about file size and care a lot about runtime, there are few reasons
to use this option, especially now that auto mode is supported. One reason to use this is if you suspect that
qpdf is removing resources it shouldn’t be removing. If you encounter such a case, please report it as a bug at
https://github.com/qpdf/qpdf/issues/.

--preserve-unreferenced-resources
This is a synonym for --remove-unreferenced-resources=no. See
--remove-unreferenced-resources.

6.7. PDF Transformation 23

https://github.com/qpdf/qpdf/issues/

QPDF, Release 10.6.3

See also --preserve-unreferenced , which does something completely different. To reduce confusion, you
should use --remove-unreferenced-resources=no instead.

--newline-before-endstream
Tell qpdf to insert a newline before the endstream keyword, not counted in the length, after any stream content
even if the last character of the stream was a newline. This may result in two newlines in some cases. This is
a requirement of PDF/A. While qpdf doesn’t specifically know how to generate PDF/A-compliant PDFs, this at
least prevents it from removing compliance on already compliant files.

--coalesce-contents
When a page’s contents are split across multiple streams, this option causes qpdf to combine them into a single
stream. Use of this option is never necessary for ordinary usage, but it can help when working with some files
in some cases. For example, this can be combined with QDF mode or content normalization to make it easier
to look at all of a page’s contents at once. It is common for PDF writers to create multiple content streams for a
variety of reasons such as making it easier to modify page contents and splitting very large content streams so
PDF viewers may be able to use less memory.

--externalize-inline-images
Convert inline images to regular images. By default, images whose data is at least 1,024 bytes are converted when
this option is selected. Use --ii-min-bytes to change the size threshold. This option is implicitly selected
when --optimize-images is selected unless --keep-inline-images is also specified.

--ii-min-bytes=size-in-bytes
Avoid converting inline images whose size is below the specified minimum size to regular images. The default
is 1,024 bytes. Use 0 for no minimum.

--min-version=version
Force the PDF version of the output file to be at least version. In other words, if the input file has a lower
version than the specified version, the specified version will be used. If the input file has a higher version, the
input file’s original version will be used. It is seldom necessary to use this option since qpdf will automatically
increase the version as needed when adding features that require newer PDF readers.

The version number may be expressed in the form major.minor[.extension-level]. If .
extension-level, is given, version is interpreted as major.minor at extension level extension-level.
For example, version 1.7.8 represents version 1.7 at extension level 8. Note that minimal syntax checking is
done on the command line. qpdf does not check whether the specified version is actually required.

--force-version=version
This option forces the PDF version to be the exact version specified even when the file may have content that is
not supported in that version. The version number is interpreted in the same way as with --min-version so
that extension levels can be set. In some cases, forcing the output file’s PDF version to be lower than that of the
input file will cause qpdf to disable certain features of the document. Specifically, 256-bit keys are disabled if the
version is less than 1.7 with extension level 8 (except the deprecated, unsupported “R5” format is allowed with
extension levels 3 through 7), AES encryption is disabled if the version is less than 1.6, cleartext metadata and
object streams are disabled if less than 1.5, 128-bit encryption keys are disabled if less than 1.4, and all encryption
is disabled if less than 1.3. Even with these precautions, qpdf won’t be able to do things like eliminate use of
newer image compression schemes, transparency groups, or other features that may have been added in more
recent versions of PDF.

As a general rule, with the exception of big structural things like the use of object streams or AES encryption,
PDF viewers are supposed to ignore features they don’t support. This means that forcing the version to a lower
version may make it possible to open your PDF file with an older version, though bear in mind that some of the
original document’s functionality may be lost.

24 Chapter 6. Running qpdf

QPDF, Release 10.6.3

6.8 Page Ranges

Several qpdf command-line options use page ranges. This section describes the syntax of a page range.

• A plain number indicates a page numbered from 1, so 1 represents the first page.

• A number preceded by r counts from the end, so r1 is the last page, r2 is the second-to-last page, etc.

• The letter z represents the last page and is the same as r1.

• Page numbers may appear in any order separated by commas.

• Two page numbers separated by dashes represents the inclusive range of pages from the first to the second. If the
first number is higher than the second number, it is the range of pages in reverse.

• The range may be appended with :odd or :even to select only pages from the resulting range in odd or even
positions. In this case, odd and even refer to positions in the final range, not whether the original page number
is odd or even.

Table 3: Example Page Ranges
1,6,4 pages 1, 6, and 4 in that order
3-7 pages 3 through 7 inclusive in increasing order
7-3 pages 7, 6, 5, 4, and 3 in that order
1-z all pages in order
z-1 all pages in reverse order
1,3,5-9,15-12 pages 1, 3, 5, 6, 7, 8, 9, 15, 14, 13, and 12 in that order
r3-r1 the last three pages of the document
r1-r3 the last three pages of the document in reverse order
1-20:even even pages from 2 to 20
5,7-9,12 pages 5, 7, 8, 9, and 12
5,7-9,12:odd pages 5, 8, and 12, which are the pages in odd positions from the original set of 5, 7, 8, 9,

12
5,7-9,12:even pages 7 and 9, which are the pages in even positions from the original set of 5, 7, 8, 9, 12

6.9 PDF Modification

Modification options make systematic changes to certain parts of the PDF, causing the PDF to render differently from
the original. See also PDF Transformation.

6.9.1 Related Options

--pages file [--password=password] [page-range] [...] --
This flag starts page selection options, which are used to select pages from one or more input files to perform
operations such as splitting, merging, and collating files.

Please see Page Selection for details about selecting pages.

See also --split-pages, --collate, Page Ranges.

--collate[=n]
This option causes qpdf to collate rather than concatenate pages specified with --pages. With a numeric
parameter, collate in groups of n. The default is 1.

Please see Page Selection for additional details.

6.8. Page Ranges 25

QPDF, Release 10.6.3

--split-pages[=n]
Write each group of n pages to a separate output file. If n is not specified, create single pages. Output file names
are generated as follows:

• If the string %d appears in the output file name, it is replaced with a range of zero-padded page numbers
starting from 1.

• Otherwise, if the output file name ends in .pdf (case insensitive), a zero-padded page range, preceded by
a dash, is inserted before the file extension.

• Otherwise, the file name is appended with a zero-padded page range preceded by a dash.

Zero padding is added to all page numbers in file names so that all the numbers are the same length, which causes
the output filenames to sort lexically in numerical order.

Page ranges are a single number in the case of single-page groups or two numbers separated by a dash otherwise.

Here are some examples. In these examples, infile.pdf has 12 pages.

• qpdf --split-pages infile.pdf %d-out: output files are 01-out through 12-out with no exten-
sion.

• qpdf --split-pages=2 infile.pdf outfile.pdf: output files are outfile-01-02.pdf through
outfile-11-12.pdf

• qpdf --split-pages infile.pdf something.else would generate files something.else-01
through something.else-12. The extension .else is not treated in any special way regarding the place-
ment of the number.

Note that outlines, threads, and other document-level features of the original PDF file are not preserved. For
each page of output, this option creates an empty PDF and copies a single page from the output into it. If you
require the document-level data, you will have to run qpdf with the --pages option once for each page. Using
--split-pages is much faster if you don’t require the document-level data. A future version of qpdf may
support preservation of some document-level information.

--overlay file [options] --
Overlay pages from another file on the output.

See Overlay and Underlay for details.

--underlay file [options] --
Underlay pages from another file on the output.

See Overlay and Underlay for details.

--flatten-rotation
For each page that is rotated using the /Rotate key in the page’s dictionary, remove the /Rotate key and
implement the identical rotation semantics by modifying the page’s contents. This option can be useful to prepare
files for buggy PDF applications that don’t properly handle rotated pages. There is usually no reason to use this
option unless you are working around a specific problem.

--flatten-annotations=parameter
This option collapses annotations into the pages’ contents with special handling for form fields. Ordinarily,
an annotation is rendered separately and on top of the page. Combining annotations into the page’s contents
effectively freezes the placement of the annotations, making them look right after various page transformations.
The library functionality backing this option was added for the benefit of programs that want to create n-up page
layouts and other similar things that don’t work well with annotations. The value of parameter may be any of
the following:

26 Chapter 6. Running qpdf

QPDF, Release 10.6.3

Table 4: Flatten Annotation Parameters
all include all annotations that are not marked invisible or hidden
print only include annotations that should appear when the page is printed
screen omit annotations that should not appear on the screen

In a PDF file, interactive form fields have a value and, independently, a set of instructions, called an appearance,
to render the filled-in field. If a form is filled in by a program that doesn’t know how to update the appearances,
they may become inconsistent with the fields’ values. If qpdf detects this case, its default behavior is not to flatten
those annotations because doing so would cause the value of the form field to be lost. This gives you a chance
to go back and resave the form with a program that knows how to generate appearances. qpdf itself can generate
appearances with some limitations. See the --generate-appearances option for details.

--rotate=[+|-]angle[:page-range]
Rotate the specified range of pages by the specified angle, which must be a multiple of 90 degrees.

The value of angle may be 0, 90, 180, or 270.

For a description of the syntax of page-range, see Page Ranges. If the page range is omitted, the rotation is
applied to all pages.

If + is prepended to angle, the angle is added, so an angle of +90 indicates a 90-degree clockwise rotation. If
- is prepended, the angle is subtracted, so -90 is a 90-degree counterclockwise rotation and is exactly the same
as +270.

If neither + or - is prepended, the rotation angle is set exactly. You almost always want + or - since, without
inspecting the actual PDF code, it is impossible to know whether a page that appears to be rotate is rotated
“naturally” or has been rotated by specifying rotation. For example, if a page appears to contain a portrait-mode
image rotated by 90 degrees so that the top of the image is on the right edge of the page, there is no way to tell by
visual inspection whether the literal top of the image is the top of the page or whether the literal top of the image
is the right edge and the page is already rotated in the PDF. Specifying a rotation angle of -90 will produce an
image that appears upright in either case. Use of absolute rotation angles should be reserved for cases in which
you have specific knowledge about the way the PDF file is constructed.

Examples:

• qpdf in.pdf out.pdf --rotate=+90:2,4,6 --rotate=+180:7-8: rotate pages 2, 4, and 6 by 90
degrees clockwise from their original rotation

• qpdf in.pdf out.pdf --rotate=+180: rotate all pages by 180 degrees

• qpdf in.pdf out.pdf --rotate=0: force each page to be displayed in its natural orientation, which
would undo the effect of any rotations previously applied in page metadata.

See also --flatten-rotation.

--generate-appearances
If a file contains interactive form fields and indicates that the appearances are out of date with the values of the
form, this flag will regenerate appearances, subject to a few limitations. Note that there is usually no reason to
do this, but it can be necessary before using the --flatten-annotations option. Here is a summary of the
limitations.

• Radio button and checkbox appearances use the pre-set values in the PDF file. qpdf just makes sure that
the correct appearance is displayed based on the value of the field. This is fine for PDF files that create their
forms properly. Some PDF writers save appearances for fields when they change, which could cause some
controls to have inconsistent appearances.

• For text fields and list boxes, any characters that fall outside of US-ASCII or, if detected, “Windows ANSI”
or “Mac Roman” encoding, will be replaced by the ? character. qpdf does not know enough about fonts
and encodings to correctly represent characters that fall outside of this range.

6.9. PDF Modification 27

QPDF, Release 10.6.3

• For variable text fields where the default appearance stream specifies that the font should be auto-sized, a
fixed font size is used rather than calculating the font size.

• Quadding is ignored. Quadding is used to specify whether the contents of a field should be left, center, or
right aligned with the field.

• Rich text, multi-line, and other more elaborate formatting directives are ignored.

• There is no support for multi-select fields or signature fields.

Appearances generated by qpdf should be good enough for simple forms consisting of ASCII characters where
the original file followed the PDF specification and provided template information for text field appearances. If
qpdf doesn’t do a good enough job with your form, use an external application to save your filled-in form before
processing it with qpdf. Most PDF viewers that support filling in of forms will generate appearance streams.
Some of them will even do it for forms filled in with characters outside the original font’s character range by
embedding additional fonts as needed.

--optimize-images
This flag causes qpdf to recompress all images that are not compressed with DCT (JPEG) using DCT compression
as long as doing so decreases the size in bytes of the image data and the image does not fall below minimum
specified dimensions. Useful information is provided when used in combination with --verbose. See also the
--oi-min-width , --oi-min-height, and --oi-min-area options. By default, inline images are converted
to regular images and optimized as well. Use --keep-inline-images to prevent inline images from being
included.

--oi-min-width=width
Avoid optimizing images whose width is below the specified amount. If omitted, the default is 128 pixels. Use
0 for no minimum.

--oi-min-height=height
Avoid optimizing images whose height is below the specified amount. If omitted, the default is 128 pixels. Use
0 for no minimum.

--oi-min-area=area-in-pixels
Avoid optimizing images whose pixel count (width × height) is below the specified amount. If omitted, the
default is 16,384 pixels. Use 0 for no minimum.

--keep-inline-images
Prevent inline images from being included in image optimization done by --optimize-images.

--remove-page-labels
Exclude page labels (explicit page numbers) from the output file.

6.10 Encryption

This section describes the options used to create encrypted files. For other options related to encryption, see also
--decrypt and --copy-encryption. For a more in-depth technical discussion of how PDF encryption works inter-
nally, see PDF Encryption.

To create an encrypted file, use

--encrypt user-password owner-password key-length [options] --

Either or both of user-password and owner-password may be empty strings. key-length may be 40, 128, or
256. Encryption options are terminated by -- by itself.

40-bit encryption is insecure, as is 128-bit encryption without AES. Use 256-bit encryption unless you have a
specific reason to use an insecure format, such as testing or compatibility with very old viewers. You must

28 Chapter 6. Running qpdf

QPDF, Release 10.6.3

use the --allow-weak-crypto flag to create encrypted files that use insecure cryptographic algorithms. The
--allow-weak-crypto flag appears outside of --encrypt ... -- (before --encrypt or after --).

If key-length is 256, the minimum PDF version is 1.7 with extension level 8, and the AES-based encryption format
used is the one described in the PDF 2.0 specification. Using 128-bit encryption forces the PDF version to be at least
1.4, or if AES is used, 1.6. Using 40-bit encryption forces the PDF version to be at least 1.3.

When 256-bit encryption is used, PDF files with empty owner passwords are insecure. To create such files, you must
specify the --allow-insecure option.

Available options vary by key length. Not all readers respect all restrictions. The default for each permission option
is to be fully permissive. These restrictions may or may not be enforced by any particular reader. qpdf allows very
granular setting of restrictions. Some readers may not recognize the combination of options you specify. If you specify
certain combinations of restrictions and find a reader that doesn’t seem to honor them as you expect, it is most likely
not a bug in qpdf. qpdf itself does not obey encryption restrictions already imposed on the file. Doing so would be
meaningless since qpdf can be used to remove encryption from the file entirely.

Here is a summary of encryption options. Details are provided in the help for each option.

Table 5: Options for 40-bit Encryption Only
--annotate=[y|n] restrict comments, filling forms, and signing
--extract=[y|n] restrict text/graphic extraction
--modify=[y|n] restrict document modification
--print=[y|n] restrict printing

Table 6: Options for 128-bit or 256-bit Encryption
--accessibility=[y|n] restrict accessibility (usually ignored)
--annotate=[y|n] restrict commenting/filling form fields
--assemble=[y|n] restrict document assembly
--extract=[y|n] restrict text/graphic extraction
--form=[y|n] restrict filling form fields
--modify-other=[y|n] restrict other modifications
--modify=modify-opt control modify access by level
--print=print-opt control printing access
--cleartext-metadata prevent encryption of metadata

Table 7: Options for 128-bit Encryption Only
--use-aes=[y|n] indicates whether to use AES encryption
--force-V4 forces use of V=4 encryption handler

Table 8: Options for 256-bit Encryption Only
--force-R5 forces use of deprecated R=5 encryption algorithm
--allow-insecure allow user password with empty owner password

Table 9: Values for print-opt
none disallow printing
low allow only low-resolution printing
full allow full printing

6.10. Encryption 29

QPDF, Release 10.6.3

Table 10: Values for modify-opt
none allow no modifications
assembly allow document assembly only
form assembly permissions plus filling in form fields and signing
annotate form permissions plus commenting and modifying forms
all allow full document modification

6.10.1 Related Options

--accessibility=[y|n]
Enable/disable extraction of text for accessibility to visually impaired users. The default is to be fully permissive.
The qpdf library disregards this field when AES is used with 128-bit encryption or when 256-bit encryption is
used. You should never disable accessibility unless you are explicitly doing so for creating test files. The PDF
spec says that conforming readers should disregard this permission and always allow accessibility.

This option is not available with 40-bit encryption.

--annotate=[y|n]
Enable/disable modifying annotations including making comments and filling in form fields. The default is to be
fully permissive. For 128-bit and 256-bit encryption, this also enables editing, creating, and deleting form fields
unless --modify-other=n or --modify=none is also specified.

--assemble=[y|n]
Enable/disable document assembly (rotation and reordering of pages). The default is to be fully permissive.

This option is not available with 40-bit encryption.

--extract=[y|n]
Enable/disable text/graphic extraction for purposes other than accessibility. The default is to be fully permissive.

--form=[y|n]
Enable/disable whether filling form fields is allowed even if modification of annotations is disabled. The default
is to be fully permissive.

This option is not available with 40-bit encryption.

--modify-other=[y|n]
Enable/disable modifications not controlled by --assemble, --annotate, or --form . --modify-other=n is
implied by any of the other --modify options except for --modify=all. The default is to be fully permissive.

This option is not available with 40-bit encryption.

--modify=modify-opt
For 40-bit files, modify-opt may only be y or n and controls all aspects of document modification. The default
is to be fully permissive.

For 128-bit and 256-bit encryption, modify-opt values allow enabling and disabling levels of restriction in a
manner similar to how some PDF creation tools do it:

Table 11: modify-opt for 128-bit and 256-bit Encryption
none allow no modifications
assembly allow document assembly only
form assembly permissions plus filling in form fields and signing
annotate form permissions plus commenting and modifying forms
all allow full document modification (the default)

30 Chapter 6. Running qpdf

QPDF, Release 10.6.3

Modify options correspond to the more granular options as follows:

Table 12: Mapping modify-opt to Other Options
none --modify-other=n --annotate=n --form=n --assemble=n
assembly --modify-other=n --annotate=n --form=n
form --modify-other=n --annotate=n
annotate --modify-other=n
all no other modify options (the default)

You can combine this option with the options listed above. If you do, later options override earlier options.

--print=print-opt
Control what kind of printing is allowed. The default is to be fully permissive. For 40-bit encryption, print-opt
may only be y or n and enables or disables all printing. For 128-bit and 256-bit encryption, print-opt may
have the following values:

Table 13: print-opt Values
none disallow printing
low allow low-resolution printing only
full allow full printing (the default)

--cleartext-metadata
If specified, any metadata stream in the document will be left unencrypted even if the rest of the document is
encrypted. This also forces the PDF version to be at least 1.5.

This option is not available with 40-bit encryption.

--use-aes=[y|n]
Enables/disables use of the more secure AES encryption with 128-bit encryption. Specifying --use-aes=y
forces the PDF version to be at least 1.6. This option is only available with 128-bit encryption. The default is n
for compatibility reasons. Use 256-bit encryption instead.

--allow-insecure
Allow creation of PDF files with 256-bit keys where the user password is non-empty and the owner password is
empty. Files created in this way are insecure since they can be opened without a password, and restrictions will
not be enforced. Users would ordinarily never want to create such files. If you are using qpdf to intentionally
created strange files for testing (a valid use of qpdf!), this option allows you to create such insecure files. This
option is only available with 256-bit encryption.

See User and Owner Passwords for a more technical discussion of this issue.

--force-V4
Use of this option forces the V and R parameters in the document’s encryption dictionary to be set to the value 4.
As qpdf will automatically do this when required, there is no reason to ever use this option. It exists primarily
for use in testing qpdf itself. This option also forces the PDF version to be at least 1.5.

--force-R5
Use an undocumented, unsupported, deprecated encryption algorithm that existed only in Acrobat version IX.
This option should not be used except for compatibility testing. If specified, qpdf sets the minimum version to
1.7 at extension level 3.

6.10. Encryption 31

QPDF, Release 10.6.3

6.11 Page Selection

qpdf allows you to use the --pages option to split and merge PDF files by selecting pages from one or more input
files.

Usage: qpdf in.pdf --pages input-file [--password=password] [page-range] [...] -- out.pdf

Between --pages and the -- that terminates pages option, repeat the following:

filename [--password=password] [page-range]

Notes:

• The password option is needed only for password-protected files. If you specify the same file more than
once, you only need to supply the password the first time.

• The page range may be omitted. If omitted, all pages are included.

• Document-level information, such as outlines, tags, etc., is taken from the primary input file (in the above
example, in.pdf) and is preserved in out.pdf. You can use --empty in place of an input file to start
from an empty file and just copy pages equally from all files.

• You can use . as a shorthand for the primary input file, if not empty.

See Page Ranges for help on specifying a page range.

Use --collate=n to cause pages to be collated in groups of n pages (default 1) instead of concatenating the input.
Note that the --collate appears outside of --pages ... -- (before --pages or after --). Pages are pulled from
each document in turn. When a document is out of pages, it is skipped. See examples below.

6.11.1 Examples

• Start with in.pdf and append all pages from a.pdf and the even pages from b.pdf, and write the output to
out.pdf. Document-level information from in.pdf is retained. Note the use of . to refer to in.pdf.

qpdf in.pdf --pages . a.pdf b.pdf:even -- out.pdf

• Take all the pages from a.pdf, all the pages from b.pdf in reverse, and only pages 3 and 6 from c.pdf and
write the result to out.pdf. Document-level metadata is discarded from all input files. The password x is used
to open b.pdf.

qpdf --empty --pages a.pdf b.pdf --password=x z-1 c.pdf 3,6

• Scan a document with double-sided printing by scanning the fronts into odd.pdf and the backs into even.pdf.
Collate the results into all.pdf. This takes the first page of odd.pdf, the first page of even.pdf, the second
page of odd.pdf, the second page of even.pdf, etc.

qpdf --collate odd.pdf --pages . even.pdf -- all.pdf
OR

qpdf --collate --empty --pages odd.pdf even.pdf -- all.pdf

• When collating, any number of files and page ranges can be specified. If any file has fewer pages, that file is just
skipped when its pages have all been included. For example, if you ran

qpdf --collate --empty --pages a.pdf 1-5 b.pdf 6-4 c.pdf r1 -- out.pdf

you would get the following pages in this order:

– a.pdf page 1

32 Chapter 6. Running qpdf

QPDF, Release 10.6.3

– b.pdf page 6

– c.pdf last page

– a.pdf page 2

– b.pdf page 5

– a.pdf page 3

– b.pdf page 4

– a.pdf page 4

– a.pdf page 5

• You can specify a numeric parameter to --collate. With --collate=n, pull groups of n pages from each
file, as always, stopping when there are no more pages. For example, if you ran

qpdf --collate=2 --empty --pages a.pdf 1-5 b.pdf 6-4 c.pdf r1 -- out.pdf

you would get the following pages in this order:

– a.pdf page 1

– a.pdf page 2

– b.pdf page 6

– b.pdf page 5

– c.pdf last page

– a.pdf page 3

– a.pdf page 4

– b.pdf page 4

– a.pdf page 5

• Take pages 1 through 5 from file1.pdf and pages 11 through 15 in reverse from file2.pdf, taking document-
level metadata from file2.pdf.

qpdf file2.pdf --pages file1.pdf 1-5 . 15-11 -- outfile.pdf

• Here’s a more contrived example. If, for some reason, you wanted to take the first page of an encrypted file called
encrypted.pdf with password pass and repeat it twice in an output file without any shared data between the
two copies of page 1, and if you wanted to drop document-level metadata but preserve encryption, you could run

qpdf --empty --copy-encryption=encrypted.pdf \
--encryption-file-password=pass \
--pages encrypted.pdf --password=pass 1 \

./encrypted.pdf --password=pass 1 -- \
outfile.pdf

Note that we had to specify the password all three times because giving a password as
--encryption-file-password doesn’t count for page selection, and as far as qpdf is concerned, encrypted.
pdf and ./encrypted.pdf are separate files. (This is by design. See Limitations for a discussion.) These are
all corner cases that most users should hopefully never have to be bothered with.

6.11. Page Selection 33

QPDF, Release 10.6.3

6.11.2 Limitations

With the exception of page labels (page numbers), qpdf doesn’t yet have full support for handling document-level data
as it relates to pages. Certain document-level features such as form fields, outlines (bookmarks), and article tags among
others, are copied in their entirety from the primary input file. Starting with qpdf version 8.3, page labels are preserved
from all files unless --remove-page-labels is specified.

It is expected that a future version of qpdf will have more complete and configurable behavior regarding document-
level metadata. In the meantime, semantics of splitting and merging vary across features. For example, the document’s
outlines (bookmarks) point to actual page objects, so if you select some pages and not others, bookmarks that point to
pages that are in the output file will work, and remaining bookmarks will not work. If you don’t want to preserve the
primary file’s metadata, use --empty as the primary input file.

Visit qpdf issues labeled with “pages” or look at the TODO file in the qpdf source distribution for some of the ideas.

Prior to qpdf version 8.4, it was not possible to specify the same page from the same file directly more than once, and
a workaround of specifying the same file in more than one way was required. Version 8.4 removes this limitation, but
when the same page is copied more than once, all its data is shared between the pages. Sometimes this is fine, but
sometimes it may not work correctly, particularly if there are form fields or you intend to perform other modifications
on one of the pages. A future version of qpdf should address this more completely. You can work around this by
specifying the same file in two different ways. For example qpdf in.pdf --pages . 1 ./in.pdf 1 -- out.
pdf would create a file with two copies of the first page of the input, and the two copies would not share any objects in
common. This includes fonts, images, and anything else the page references.

6.12 Overlay and Underlay

You can use qpdf to overlay or underlay pages from other files onto the output generated by qpdf. Specify overlay or
underlay as follows:

{--overlay|--underlay} file [options] --

Overlay and underlay options are processed late, so they can be combined with other options like merging and will apply
to the final output. The --overlay and --underlay options work the same way, except underlay pages are drawn
underneath the page to which they are applied, possibly obscured by the original page, and overlay files are drawn on
top of the page to which they are applied, possibly obscuring the page. You can combine overlay and underlay, but you
can only specify each option at most one time.

The default behavior of overlay and underlay is that pages are taken from the overlay/underlay file in sequence and
applied to corresponding pages in the output until there are no more output pages. If the overlay or underlay file runs
out of pages, remaining output pages are left alone. This behavior can be modified by options, which are provided
between the --overlay or --underlay flag and the -- option. The following options are supported:

--to=page-range

Specify a page range (see Page Ranges) that indicates which pages in the output should have the overlay/underlay
applied. If not specified, overlay/underlay are applied to all pages.

--from=[page-range]

Specify a page range that indicates which pages in the overlay/underlay file will be used for overlay or underlay. If not
specified, all pages will be used. The “from” pages are used until they are exhausted, after which any pages specified
with --repeat are used. If you are using the --repeat option, you can use --from= to provide an empty set of
“from” pages.

34 Chapter 6. Running qpdf

https://github.com/qpdf/qpdf/issues?q=is%3Aopen+is%3Aissue+label%3Apages

QPDF, Release 10.6.3

This Can be left empty by omitting page-range

--repeat=page-range

Specify an optional page range that indicates which pages in the overlay/underlay file will be repeated after the “from”
pages are used up. If you want to apply a repeat a range of pages starting with the first page of output, you can explicitly
use --from=.

6.12.1 Examples

• Overlay the first three pages from file o.pdf onto the first three pages of the output, then overlay page 4 from
o.pdf onto pages 4 and 5 of the output. Leave remaining output pages untouched.

qpdf in.pdf --overlay o.pdf --to=1-5 --from=1-3 --repeat=4 -- out.pdf

• Underlay page 1 of footer.pdf on all odd output pages, and underlay page 2 of footer.pdf on all even output
pages.

qpdf in.pdf --underlay footer.pdf --from= --repeat=1,2 -- out.pdf

• Combine two files and overlay the single page from watermark.pdf on the result.

qpdf --empty --pages a.pdf b.pdf -- \
--overlay watermark.pdf --from= --repeat=1 -- out.pdf

6.13 Embedded Files/Attachments

It is possible to list, add, or delete embedded files (also known as attachments) and to copy attachments from other
files. See also --list-attachments and --show-attachment.

6.13.1 Related Options

--add-attachment file [options] --
This flag starts add attachment options, which are used to add attachments to a file.

The --add-attachment flag and its options may be repeated to add multiple attachments. Please see Options
for Adding Attachments for additional details.

--copy-attachments-from file [options] --
This flag starts copy attachment options, which are used to copy attachments from other files.

The --copy-attachments-from flag and its options may be repeated to copy attachments from multiple files.
Please see Options for Copying Attachments for additional details.

--remove-attachment=key
Remove the specified attachment. This doesn’t only remove the attachment from the embedded files table but
also clears out the file specification to ensure that the attachment is actually not present in the output file. That
means that any potential internal links to the attachment will be broken. Run with --verbose to see status of
the removal. Use --list-attachments to find the attachment key. This option may be repeated to remove
multiple attachments.

6.13. Embedded Files/Attachments 35

QPDF, Release 10.6.3

6.13.2 PDF Date Format

When a date is required, the date should conform to the PDF date format specification, which is D:yyyymmddhhmmssz
where z is either literally upper case Z for UTC or a timezone offset in the form -hh'mm' or +hh'mm'. Negative timezone
offsets indicate time before UTC. Positive offsets indicate how far after. For example, US Eastern Standard Time
(America/New_York) is -05'00', and Indian Standard Time (Asia/Calcutta) is +05'30'.

Table 14: PDF Date Examples
D:20210207161528-05'00' February 7, 2021 at 4:15:28 p.m.
D:20210207211528Z February 7, 2021 at 21:15:28 UTC

6.13.3 Options for Adding Attachments

These options are valid between --add-attachment and --.

--key=key
Specify the key to use for the attachment in the embedded files table. It defaults to the last element of the attached
file’s filename. For example, if you say --add-attachment /home/user/image.png, the default key will be
just image.png.

--filename=name
Specify the filename to be used for the attachment. This is what is usually displayed to the user and is the name
most graphical PDF viewers will use when saving a file. It defaults to the last element of the attached file’s
filename. For example, if you say --add-attachment /home/user/image.png, the default key will be just
image.png.

--creationdate=date
Specify the attachment’s creation date in PDF format; defaults to the current time. See PDF Date Format for
information about the date format.

--moddate=date
Specify the attachment’s modification date in PDF format; defaults to the current time. See PDF Date Format
for information about the date format.

--mimetype=type/subtype
Specify the mime type for the attachment, such as text/plain, application/pdf, image/png, etc. The qpdf
library does not automatically determine the mime type. In a UNIX-like environment, the file command can
often provide this information. In MacOS, you can use file -I filename. In Linux, it’s file -i filename.

Implementation note: the mime type appears in a field called /Subtype in the PDF file, but that field actually
includes the full type and subtype of the mime type. This is because /Type already means something else in
PDF.

--description="text"
Supply descriptive text for the attachment, displayed by some PDF viewers.

--replace
Indicate that any existing attachment with the same key should be replaced by the new attachment. Otherwise,
qpdf gives an error if an attachment with that key is already present.

36 Chapter 6. Running qpdf

QPDF, Release 10.6.3

6.13.4 Options for Copying Attachments

Options in this section are valid between --copy-attachments-from and --.

--prefix=prefix
Only required if the file from which attachments are being copied has attachments with keys that conflict with
attachments already in the file. In this case, the specified prefix will be prepended to each key. This affects
only the key in the embedded files table, not the file name. The PDF specification doesn’t preclude multiple
attachments having the same file name.

6.14 PDF Inspection

These options provide tools for inspecting PDF files. When any of the options in this section are specified, no output
file may be given.

6.14.1 Related Options

--is-encrypted
Silently exit with a code indicating the file’s encryption status:

Table 15: Exit Codes for --is-encrypted
0 the file is encrypted
1 not used
2 the file is not encrypted

This option can be used for password-protected files even if you don’t know the password.

This option is useful for shell scripts. Other options are ignored if this is given. This option is mutually exclu-
sive with --requires-password . Both this option and --requires-password exit with status 2 for non-
encrypted files.

--requires-password
Silently exit with a code indicating the file’s password status:

Table 16: Exit Codes for --requires-password
0 a password, other than as supplied, is required
1 not used
2 the file is not encrypted
3 the file is encrypted, and correct password (if any) has been supplied

Use with the --password option to specify the password to test.

The choice of exit status 0 to mean that a password is required is to enable code like

if [qpdf --requires-password file.pdf]; then
prompt for password

fi

If a password is supplied with --password , that password is used to open the file just as with any normal
invocation of qpdf. That means that using this option with --password can be used to check the correctness
of the password. In that case, an exit status of 3 means the file works with the supplied password. This option

6.14. PDF Inspection 37

QPDF, Release 10.6.3

is mutually exclusive with --is-encrypted . Both this option and --is-encrypted exit with status 2 for
non-encrypted files.

--check
Check the file’s structure as well as encryption, linearization, and encoding of stream data, and write information
about the file to standard output. An exit status of 0 indicates syntactic correctness of the PDF file. Note that
--check writes nothing to standard error when everything is valid, so if you are using this to programmatically
validate files in bulk, it is safe to run without output redirected to /dev/null and just check for a 0 exit code.

A file for which --check reports no errors may still have errors in stream data content or may contain constructs
that don’t conform to the PDF specification, but it should be syntactically valid. If --check reports any errors,
qpdf will exit with a status of 2. There are some recoverable conditions that --check detects. These are issued
as warnings instead of errors. If qpdf finds no errors but finds warnings, it will exit with a status of 3. When
--check is combined with other options, checks are always performed before any other options are processed.
For erroneous files, --check will cause qpdf to attempt to recover, after which other options are effectively
operating on the recovered file. Combining --check with other options in this way can be useful for manually
recovering severely damaged files.

See also Exit Status.

--show-encryption
This option shows document encryption parameters. It also shows the document’s user password if the owner
password is given and the file was encrypted using older encryption formats that allow user password recovery.
(See PDF Encryption for a technical discussion of this feature.) The output of --show-encryption is included
in the output of --check .

--show-encryption-key
When encryption information is being displayed, as when --check or --show-encryption is given, display
the computed or retrieved encryption key as a hexadecimal string. This value is not ordinarily useful to users,
but it can be used as the parameter to --password if the --password-is-hex-key is specified. Note that,
when PDF files are encrypted, passwords and other metadata are used only to compute an encryption key, and
the encryption key is what is actually used for encryption. This enables retrieval of that key. See PDF Encryption
for a technical discussion.

--check-linearization
Check to see whether a file is linearized and, if so, whether the linearization hint tables are correct. qpdf does
not check all aspects of linearization. A linearized PDF file with linearization errors that is otherwise correct is
almost always readable by a PDF viewer. As such, “errors” in PDF linearization are treated by qpdf as warnings.

--show-linearization
Check and display all data in the linearization hint tables.

--show-xref
Show the contents of the cross-reference table or stream in a human-readable form. The cross-reference data gives
the offset of regular objects and the object stream ID and 0-based index within the object stream for compressed
objects. This is especially useful for files with cross-reference streams, which are stored in a binary format. If
the file is invalid and cross reference table reconstruction is performed, this option will show the information in
the reconstructed table.

--show-object={trailer|obj[,gen]}
Show the contents of the given object. This is especially useful for inspecting objects that are inside of object
streams (also known as “compressed objects”).

--raw-stream-data
When used with --show-object, if the object is a stream, write the raw (compressed) binary stream data to
standard output instead of the object’s contents. Avoid combining this with other inspection options to avoid
commingling the stream data with other output. See also --filtered-stream-data.

38 Chapter 6. Running qpdf

QPDF, Release 10.6.3

--filtered-stream-data
When used with --show-object, if the object is a stream, write the filtered (uncompressed, potentially binary)
stream data to standard output instead of the object’s contents. If the stream is filtered using filters that qpdf
does not support, an error will be issued. This option acts as if --decode-level=all was specified (see
--decode-level), so it will uncompress images compressed with supported lossy compression schemes. Avoid
combining this with other inspection options to avoid commingling the stream data with other output.

This option may be combined with --normalize-content. If you do this, qpdf will attempt to run content
normalization even if the stream is not a content stream, which will probably produce unusable results.

See also --raw-stream-data.

--show-npages
Print the number of pages in the input file on a line by itself. Since the number of pages appears by itself on a
line, this option can be useful for scripting if you need to know the number of pages in a file.

--show-pages
Show the object and generation number for each page dictionary object and for each content stream associated
with the page. Having this information makes it more convenient to inspect objects from a particular page. See
also --with-images.

--with-images
When used with --show-pages, also shows the object and generation numbers for the image objects on each
page.

--list-attachments
Show the key and stream number for each embedded file. With --verbose, additional information, including
preferred file name, description, dates, and more are also displayed. The key is usually but not always equal to
the file name and is needed by some of the other options. See also Embedded Files/Attachments.

--show-attachment=key
Write the contents of the specified attachment to standard output as binary data. The key should match one of
the keys shown by --list-attachments. If this option is given more than once, only the last attachment will
be shown. See also Embedded Files/Attachments.

6.15 JSON Options

It is possible to view information about PDF files in a JSON format. See QPDF JSON for details about the qpdf JSON
format.

6.15.1 Related Options

--json[=version]
Generate a JSON representation of the file. This is described in depth in QPDF JSON . The version parameter
can be used to specify which version of the qpdf JSON format should be output. The only supported value is 1,
but it’s possible that a new JSON output version will be added in a future version. You can also specify latest
to use the latest JSON version. For backward compatibility, the default value will remain 1 until qpdf version
11, after which point it will become latest. In all case, you can tell what version of the JSON output you have
from the "version" key in the output. Use the --json-help option to get a description of the JSON object.

--json-help
Describe the format of the JSON output by writing to standard output a JSON object with the same structure
with the same keys as the JSON generated by qpdf. In the output written by --json-help, each key’s value is a
description of the key. The specific contract guaranteed by qpdf in its JSON representation is explained in more
detail in the QPDF JSON .

6.15. JSON Options 39

QPDF, Release 10.6.3

--json-key=key
This option is repeatable. If given, only the specified top-level keys will be included in the JSON output. Other-
wise, all keys will be included. version and parameters will always appear in the output.

--json-object={trailer|obj[,gen]}
This option is repeatable. If given, only specified objects will be shown in the “objects” key of the JSON
output. Otherwise, all objects will be shown.

--job-json-help
Describe the format of the QPDFJob JSON input used by --job-json-file. For more information about
QPDFJob, see QPDFJob: a Job-Based Interface.

6.16 Options for Testing or Debugging

The options below are useful when writing automated test code that includes files created by qpdf or when testing qpdf
itself. When changes are made to qpdf, care is taken to avoid gratuitously changing the output of PDF files. This is to
make it easier to do direct comparisons in test suites with files created by qpdf. However, there are no guarantees that
the PDF output won’t change such as in the event of a bug fix or feature enhancement to some aspect of the output that
qpdf creates.

6.16.1 Idempotency

Note about idempotency of byte-for-byte content: there is no expectation that qpdf is idempotent in the general case.
In other words, there is no expectation that, when qpdf is run on its own output, it will create byte-for-byte identical
output, even though it will create semantically identical files. There are a variety of reasons for this including document
ID generation, which includes a random element, as well as the interaction of stream length encoding with dictionary
key sorting.

It is possible to get idempotent behavior by using the --static-id or --deterministic-id option with qpdf and
running it three times so that you are processing the output of qpdf on its own previous output. For example, in this
sequence of commands:

qpdf any-file.pdf 1.pdf
qpdf --static-id 1.pdf 2.pdf
qpdf --static-id 2.pdf 3.pdf

the files 2.pdf and 3.pdf should be byte-for-byte identical. The qpdf test suite relies on this behavior. See also
--static-aes-iv.

6.16.2 Related Options

--static-id
Use a fixed value for the document ID (/ID in the trailer). This is intended for testing only. Never use it
for production files. If you are trying to get the same ID each time for a given file and you are not generating
encrypted files, consider using the --deterministic-id option.

--static-aes-iv
Use a static initialization vector for AES-CBC. This is intended for testing only so that output files can be re-
producible. Never use it for production files. This option in particular is not secure since it significantly
weakens the encryption. When combined with --static-id and using the three-step process described in
Idempotency, it is possible to create byte-for-byte idempotent output with PDF files that use 256-bit encryption
to assist with creating reproducible test suites.

40 Chapter 6. Running qpdf

QPDF, Release 10.6.3

--linearize-pass1=file
Write the first pass of linearization to the named file. The resulting file is not a valid PDF file. This option is
useful only for debugging QPDFWriter’s linearization code. When qpdf linearizes files, it writes the file in two
passes, using the first pass to calculate sizes and offsets that are required for hint tables and the linearization
dictionary. Ordinarily, the first pass is discarded. This option enables it to be captured, allowing inspection of
the file before values calculated in pass 1 are inserted into the file for pass 2.

6.17 Unicode Passwords

At the library API level, all methods that perform encryption and decryption interpret passwords as strings of bytes.
It is up to the caller to ensure that they are appropriately encoded. Starting with qpdf version 8.4.0, qpdf will attempt
to make this easier for you when interacting with qpdf via its command line interface. The PDF specification requires
passwords used to encrypt files with 40-bit or 128-bit encryption to be encoded with PDF Doc encoding. This encoding
is a single-byte encoding that supports ISO-Latin-1 and a handful of other commonly used characters. It has a large
overlap with Windows ANSI but is not exactly the same. There is generally no way to provide PDF Doc encoded strings
on the command line. As such, qpdf versions prior to 8.4.0 would often create PDF files that couldn’t be opened with
other software when given a password with non-ASCII characters to encrypt a file with 40-bit or 128-bit encryption.
Starting with qpdf 8.4.0, qpdf recognizes the encoding of the parameter and transcodes it as needed. The rest of this
section provides the details about exactly how qpdf behaves. Most users will not need to know this information, but
it might be useful if you have been working around qpdf’s old behavior or if you are using qpdf to generate encrypted
files for testing other PDF software.

A note about Windows: when qpdf builds, it attempts to determine what it has to do to use wmain instead of main
on Windows. The wmain function is an alternative entry point that receives all arguments as UTF-16-encoded strings.
When qpdf starts up this way, it converts all the strings to UTF-8 encoding and then invokes the regular main. This
means that, as far as qpdf is concerned, it receives its command-line arguments with UTF-8 encoding, just as it would
in any modern Linux or UNIX environment.

If a file is being encrypted with 40-bit or 128-bit encryption and the supplied password is not a valid UTF-8 string,
qpdf will fall back to the behavior of interpreting the password as a string of bytes. If you have old scripts that encrypt
files by passing the output of iconv to qpdf, you no longer need to do that, but if you do, qpdf should still work. The
only exception would be for the extremely unlikely case of a password that is encoded with a single-byte encoding but
also happens to be valid UTF-8. Such a password would contain strings of even numbers of characters that alternate
between accented letters and symbols. In the extremely unlikely event that you are intentionally using such passwords
and qpdf is thwarting you by interpreting them as UTF-8, you can use --password-mode=bytes to suppress qpdf’s
automatic behavior.

The --password-mode option, as described earlier in this chapter, can be used to change qpdf’s interpretation of sup-
plied passwords. There are very few reasons to use this option. One would be the unlikely case described in the previous
paragraph in which the supplied password happens to be valid UTF-8 but isn’t supposed to be UTF-8. Your best bet
would be just to provide the password as a valid UTF-8 string, but you could also use --password-mode=bytes.
Another reason to use --password-mode=bytes would be to intentionally generate PDF files encrypted with pass-
words that are not properly encoded. The qpdf test suite does this to generate invalid files for the purpose of testing its
password recovery capability. If you were trying to create intentionally incorrect files for a similar purposes, the bytes
password mode can enable you to do this.

When qpdf attempts to decrypt a file with a password that contains non-ASCII characters, it will generate a list of
alternative passwords by attempting to interpret the password as each of a handful of different coding systems and then
transcode them to the required format. This helps to compensate for the supplied password being given in the wrong
coding system, such as would happen if you used the iconv workaround that was previously needed. It also generates
passwords by doing the reverse operation: translating from correct in incorrect encoding of the password. This would
enable qpdf to decrypt files using passwords that were improperly encoded by whatever software encrypted the files,
including older versions of qpdf invoked without properly encoded passwords. The combination of these two recovery
methods should make qpdf transparently open most encrypted files with the password supplied correctly but in the

6.17. Unicode Passwords 41

QPDF, Release 10.6.3

wrong coding system. There are no real downsides to this behavior, but if you don’t want qpdf to do this, you can use
the --suppress-password-recovery option. One reason to do that is to ensure that you know the exact password
that was used to encrypt the file.

With these changes, qpdf now generates compliant passwords in most cases. There are still some exceptions. In par-
ticular, the PDF specification directs compliant writers to normalize Unicode passwords and to perform certain trans-
formations on passwords with bidirectional text. Implementing this functionality requires using a real Unicode library
like ICU. If a client application that uses qpdf wants to do this, the qpdf library will accept the resulting passwords, but
qpdf will not perform these transformations itself. It is possible that this will be addressed in a future version of qpdf.
The QPDFWriter methods that enable encryption on the output file accept passwords as strings of bytes.

Please note that the --password-is-hex-key option is unrelated to all this. That flag bypasses the normal process of
going from password to encryption key entirely, allowing the raw encryption key to be specified directly. That behavior
is useful for forensic purposes or for brute-force recovery of files with unknown passwords and has nothing to do with
the document’s actual passwords.

42 Chapter 6. Running qpdf

CHAPTER

SEVEN

QDF MODE

In QDF mode, qpdf creates PDF files in what we call QDF form. A PDF file in QDF form, sometimes called a QDF
file, is a completely valid PDF file that has %QDF-1.0 as its third line (after the pdf header and binary characters)
and has certain other characteristics. The purpose of QDF form is to make it possible to edit PDF files, with some
restrictions, in an ordinary text editor. This can be very useful for experimenting with different PDF constructs or for
making one-off edits to PDF files (though there are other reasons why this may not always work). Note that QDF mode
does not support linearized files. If you enable linearization, QDF mode is automatically disabled.

It is ordinarily very difficult to edit PDF files in a text editor for two reasons: most meaningful data in PDF files is
compressed, and PDF files are full of offset and length information that makes it hard to add or remove data. A QDF
file is organized in a manner such that, if edits are kept within certain constraints, the fix-qdf program, distributed
with qpdf, is able to restore edited files to a correct state. The fix-qdf program takes no command-line arguments. It
reads a possibly edited QDF file from standard input and writes a repaired file to standard output.

The following attributes characterize a QDF file:

• All objects appear in numerical order in the PDF file, including when objects appear in object streams.

• Objects are printed in an easy-to-read format, and all line endings are normalized to UNIX line endings.

• Unless specifically overridden, streams appear uncompressed (when qpdf supports the filters and they are com-
pressed with a non-lossy compression scheme), and most content streams are normalized (line endings are con-
verted to just a UNIX-style linefeeds).

• All streams lengths are represented as indirect objects, and the stream length object is always the next object after
the stream. If the stream data does not end with a newline, an extra newline is inserted, and a special comment
appears after the stream indicating that this has been done.

• If the PDF file contains object streams, if object stream n contains k objects, those objects are numbered from
n+1 through n+k, and the object number/offset pairs appear on a separate line for each object. Additionally, each
object in the object stream is preceded by a comment indicating its object number and index. This makes it very
easy to find objects in object streams.

• All beginnings of objects, stream tokens, endstream tokens, and endobj tokens appear on lines by themselves.
A blank line follows every endobj token.

• If there is a cross-reference stream, it is unfiltered.

• Page dictionaries and page content streams are marked with special comments that make them easy to find.

• Comments precede each object indicating the object number of the corresponding object in the original file.

When editing a QDF file, any edits can be made as long as the above constraints are maintained. This means that you
can freely edit a page’s content without worrying about messing up the QDF file. It is also possible to add new objects
so long as those objects are added after the last object in the file or subsequent objects are renumbered. If a QDF file
has object streams in it, you can always add the new objects before the xref stream and then change the number of the
xref stream, since nothing generally ever references it by number.

43

QPDF, Release 10.6.3

It is not generally practical to remove objects from QDF files without messing up object numbering, but if you remove
all references to an object, you can run qpdf on the file (after running fix-qdf), and qpdf will omit the now-orphaned
object.

When fix-qdf is run, it goes through the file and recomputes the following parts of the file:

• the /N, /W, and /First keys of all object stream dictionaries

• the pairs of numbers representing object numbers and offsets of objects in object streams

• all stream lengths

• the cross-reference table or cross-reference stream

• the offset to the cross-reference table or cross-reference stream following the startxref token

44 Chapter 7. QDF Mode

CHAPTER

EIGHT

USING THE QPDF LIBRARY

8.1 Using QPDF from C++

The source tree for the qpdf package has an examples directory that contains a few example programs. The qpdf/
qpdf.cc source file also serves as a useful example since it exercises almost all of the qpdf library’s public interface.
The best source of documentation on the library itself is reading comments in include/qpdf/QPDF.hh, include/
qpdf/QPDFWriter.hh, and include/qpdf/QPDFObjectHandle.hh.

All header files are installed in the include/qpdf directory. It is recommend that you use #include <qpdf/QPDF.
hh> rather than adding include/qpdf to your include path.

When linking against the qpdf static library, you may also need to specify -lz -ljpeg on your link command. If your
system understands how to read libtool .la files, this may not be necessary.

The qpdf library is safe to use in a multithreaded program, but no individual QPDF object instance (including QPDF,
QPDFObjectHandle, or QPDFWriter) can be used in more than one thread at a time. Multiple threads may simulta-
neously work with different instances of these and all other QPDF objects.

8.2 Using QPDF from other languages

The qpdf library is implemented in C++, which makes it hard to use directly in other languages. There are a few things
that can help.

“C” The qpdf library includes a “C” language interface that provides a subset of the overall capabilities. The header file
qpdf/qpdf-c.h includes information about its use. As long as you use a C++ linker, you can link C programs
with qpdf and use the C API. For languages that can directly load methods from a shared library, the C API
can also be useful. People have reported success using the C API from other languages on Windows by directly
calling functions in the DLL.

Python A Python module called pikepdf provides a clean and highly functional set of Python bindings to the qpdf
library. Using pikepdf, you can work with PDF files in a natural way and combine qpdf’s capabilities with other
functionality provided by Python’s rich standard library and available modules.

Other Languages Starting with version 8.3.0, the qpdf command-line tool can produce a JSON representation of
the PDF file’s non-content data. This can facilitate interacting programmatically with PDF files through qpdf’s
command line interface. For more information, please see QPDF JSON .

45

https://pypi.org/project/pikepdf/

QPDF, Release 10.6.3

8.3 A Note About Unicode File Names

When strings are passed to qpdf library routines either as char* or as std::string, they are treated as byte arrays
except where otherwise noted. When Unicode is desired, qpdf wants UTF-8 unless otherwise noted in comments in
header files. In modern UNIX/Linux environments, this generally does the right thing. In Windows, it’s a bit more
complicated. Starting in qpdf 8.4.0, passwords that contain Unicode characters are handled much better, and starting
in qpdf 8.4.1, the library attempts to properly handle Unicode characters in filenames. In particular, in Windows, if
a UTF-8 encoded string is used as a filename in either QPDF or QPDFWriter, it is internally converted to wchar_t*,
and Unicode-aware Windows APIs are used. As such, qpdf will generally operate properly on files with non-ASCII
characters in their names as long as the filenames are UTF-8 encoded for passing into the qpdf library API, but there
are still some rough edges, such as the encoding of the filenames in error messages our CLI output messages. Patches
or bug reports are welcome for any continuing issues with Unicode file names in Windows.

46 Chapter 8. Using the QPDF Library

CHAPTER

NINE

WEAK CRYPTOGRAPHY

Start with version 10.4, qpdf is taking steps to reduce the likelihood of a user accidentally creating PDF files with
insecure cryptography but will continue to allow creation of such files indefinitely with explicit acknowledgment.

The PDF file format makes use of RC4, which is known to be a weak cryptography algorithm, and MD5, which is a weak
hashing algorithm. In version 10.4, qpdf generates warnings for some (but not all) cases of writing files with weak cryp-
tography when invoked from the command-line. These warnings can be suppressed using the --allow-weak-crypto
option.

It is planned for qpdf version 11 to be stricter, making it an error to write files with insecure cryptography from the
command-line tool in most cases without specifying the --allow-weak-crypto flag and also to require explicit steps
when using the C++ library to enable use of insecure cryptography.

Note that qpdf must always retain support for weak cryptographic algorithms since this is required for reading older
PDF files that use it. Additionally, qpdf will always retain the ability to create files using weak cryptographic algorithms
since, as a development tool, qpdf explicitly supports creating older or deprecated types of PDF files since these are
sometimes needed to test or work with older versions of software. Even if other cryptography libraries drop support
for RC4 or MD5, qpdf can always fall back to its internal implementations of those algorithms, so they are not going
to disappear from qpdf.

47

QPDF, Release 10.6.3

48 Chapter 9. Weak Cryptography

CHAPTER

TEN

QPDF JSON

10.1 Overview

Beginning with qpdf version 8.3.0, the qpdf command-line program can produce a JSON representation of the non-
content data in a PDF file. It includes a dump in JSON format of all objects in the PDF file excluding the content of
streams. This JSON representation makes it very easy to look in detail at the structure of a given PDF file, and it also
provides a great way to work with PDF files programmatically from the command-line in languages that can’t call or
link with the qpdf library directly. Note that stream data can be extracted from PDF files using other qpdf command-line
options.

10.2 JSON Guarantees

The qpdf JSON representation includes a JSON serialization of the raw objects in the PDF file as well as some com-
puted information in a more easily extracted format. QPDF provides some guarantees about its JSON format. These
guarantees are designed to simplify the experience of a developer working with the JSON format.

Compatibility The top-level JSON object output is a dictionary. The JSON output contains various nested dictionaries
and arrays. With the exception of dictionaries that are populated by the fields of objects from the file, all instances
of a dictionary are guaranteed to have exactly the same keys. Future versions of qpdf are free to add additional
keys but not to remove keys or change the type of object that a key points to. The qpdf program validates this
guarantee, and in the unlikely event that a bug in qpdf should cause it to generate data that doesn’t conform to
this rule, it will ask you to file a bug report.

The top-level JSON structure contains a “version” key whose value is simple integer. The value of the version
key will be incremented if a non-compatible change is made. A non-compatible change would be any change that
involves removal of a key, a change to the format of data pointed to by a key, or a semantic change that requires a
different interpretation of a previously existing key. A strong effort will be made to avoid breaking compatibility.

Documentation The qpdf command can be invoked with the --json-help option. This will output a JSON structure
that has the same structure as the JSON output that qpdf generates, except that each field in the help output is a
description of the corresponding field in the JSON output. The specific guarantees are as follows:

• A dictionary in the help output means that the corresponding location in the actual JSON output is also a
dictionary with exactly the same keys; that is, no keys present in help are absent in the real output, and no
keys will be present in the real output that are not in help. As a special case, if the dictionary has a single
key whose name starts with < and ends with >, it means that the JSON output is a dictionary that can have
any keys, each of which conforms to the value of the special key. This is used for cases in which the keys
of the dictionary are things like object IDs.

• A string in the help output is a description of the item that appears in the corresponding location of the
actual output. The corresponding output can have any format.

49

QPDF, Release 10.6.3

• An array in the help output always contains a single element. It indicates that the corresponding location
in the actual output is also an array, and that each element of the array has whatever format is implied by
the single element of the help output’s array.

For example, the help output indicates includes a “pagelabels” key whose value is an array of one element.
That element is a dictionary with keys “index” and “label”. In addition to describing the meaning of those
keys, this tells you that the actual JSON output will contain a pagelabels array, each of whose elements is a
dictionary that contains an index key, a label key, and no other keys.

Directness and Simplicity The JSON output contains the value of every object in the file, but it also contains some
processed data. This is analogous to how qpdf’s library interface works. The processed data is similar to the
helper functions in that it allows you to look at certain aspects of the PDF file without having to understand all
the nuances of the PDF specification, while the raw objects allow you to mine the PDF for anything that the
higher-level interfaces are lacking.

10.3 Limitations of JSON Representation

There are a few limitations to be aware of with the JSON structure:

• Strings, names, and indirect object references in the original PDF file are all converted to strings in the JSON
representation. In the case of a “normal” PDF file, you can tell the difference because a name starts with a slash
(/), and an indirect object reference looks like n n R, but if there were to be a string that looked like a name or
indirect object reference, there would be no way to tell this from the JSON output. Note that there are certain
cases where you know for sure what something is, such as knowing that dictionary keys in objects are always
names and that certain things in the higher-level computed data are known to contain indirect object references.

• The JSON format doesn’t support binary data very well. Mostly the details are not important, but they are
presented here for information. When qpdf outputs a string in the JSON representation, it converts the string to
UTF-8, assuming usual PDF string semantics. Specifically, if the original string is UTF-16, it is converted to
UTF-8. Otherwise, it is assumed to have PDF doc encoding, and is converted to UTF-8 with that assumption.
This causes strange things to happen to binary strings. For example, if you had the binary string <038051>, this
would be output to the JSON as \u0003•Q because 03 is not a printable character and 80 is the bullet character
in PDF doc encoding and is mapped to the Unicode value 2022. Since 51 is Q, it is output as is. If you wanted to
convert back from here to a binary string, would have to recognize Unicode values whose code points are higher
than 0xFF and map those back to their corresponding PDF doc encoding characters. There is no way to tell the
difference between a Unicode string that was originally encoded as UTF-16 or one that was converted from PDF
doc encoding. In other words, it’s best if you don’t try to use the JSON format to extract binary strings from the
PDF file, but if you really had to, it could be done. Note that qpdf’s --show-object option does not have this
limitation and will reveal the string as encoded in the original file.

10.4 JSON: Special Considerations

For the most part, the built-in JSON help tells you everything you need to know about the JSON format, but there are
a few non-obvious things to be aware of:

• While qpdf guarantees that keys present in the help will be present in the output, those fields may be null or
empty if the information is not known or absent in the file. Also, if you specify --json-key, the keys that are
not listed will be excluded entirely except for those that --json-help says are always present.

• In a few places, there are keys with names containing pageposfrom1. The values of these keys are null or an
integer. If an integer, they point to a page index within the file numbering from 1. Note that JSON indexes from 0,
and you would also use 0-based indexing using the API. However, 1-based indexing is easier in this case because
the command-line syntax for specifying page ranges is 1-based. If you were going to write a program that looked
through the JSON for information about specific pages and then use the command-line to extract those pages,

50 Chapter 10. QPDF JSON

QPDF, Release 10.6.3

1-based indexing is easier. Besides, it’s more convenient to subtract 1 from a program in a real programming
language than it is to add 1 from shell code.

• The image information included in the page section of the JSON output includes the key “filterable”. Note
that the value of this field may depend on the --decode-level that you invoke qpdf with. The JSON output
includes a top-level key “parameters” that indicates the decode level used for computing whether a stream was
filterable. For example, jpeg images will be shown as not filterable by default, but they will be shown as filterable
if you run qpdf --json --decode-level=all.

• The encrypt key’s values will be populated for non-encrypted files. Some values will be null, and others will
have values that apply to unencrypted files.

10.4. JSON: Special Considerations 51

QPDF, Release 10.6.3

52 Chapter 10. QPDF JSON

CHAPTER

ELEVEN

DESIGN AND LIBRARY NOTES

11.1 Introduction

This section was written prior to the implementation of the qpdf package and was subsequently modified to reflect the
implementation. In some cases, for purposes of explanation, it may differ slightly from the actual implementation. As
always, the source code and test suite are authoritative. Even if there are some errors, this document should serve as a
road map to understanding how this code works.

In general, one should adhere strictly to a specification when writing but be liberal in reading. This way, the prod-
uct of our software will be accepted by the widest range of other programs, and we will accept the widest range of
input files. This library attempts to conform to that philosophy whenever possible but also aims to provide strict
checking for people who want to validate PDF files. If you don’t want to see warnings and are trying to write some-
thing that is tolerant, you can call setSuppressWarnings(true). If you want to fail on the first error, you can call
setAttemptRecovery(false). The default behavior is to generating warnings for recoverable problems. Note that
recovery will not always produce the desired results even if it is able to get through the file. Unlike most other PDF
files that produce generic warnings such as “This file is damaged,”, qpdf generally issues a detailed error message that
would be most useful to a PDF developer. This is by design as there seems to be a shortage of PDF validation tools out
there. This was, in fact, one of the major motivations behind the initial creation of qpdf.

11.2 Design Goals

The QPDF package includes support for reading and rewriting PDF files. It aims to hide from the user details involving
object locations, modified (appended) PDF files, the directness/indirectness of objects, and stream filters including
encryption. It does not aim to hide knowledge of the object hierarchy or content stream contents. Put another way, a
user of the qpdf library is expected to have knowledge about how PDF files work, but is not expected to have to keep
track of bookkeeping details such as file positions.

A user of the library never has to care whether an object is direct or indirect, though it is possible to determine whether
an object is direct or not if this information is needed. All access to objects deals with this transparently. All memory
management details are also handled by the library.

The PointerHolder object is used internally by the library to deal with memory management. This is basically a
smart pointer object very similar in spirit to C++-11’s std::shared_ptr object, but predating it by several years.
This library also makes use of a technique for giving fine-grained access to methods in one class to other classes by
using public subclasses with friends and only private members that in turn call private methods of the containing class.
See QPDFObjectHandle::Factory as an example.

The top-level qpdf class is QPDF. A QPDF object represents a PDF file. The library provides methods for both accessing
and mutating PDF files.

The primary class for interacting with PDF objects is QPDFObjectHandle. Instances of this class can be passed
around by value, copied, stored in containers, etc. with very low overhead. Instances of QPDFObjectHandle created

53

QPDF, Release 10.6.3

by reading from a file will always contain a reference back to the QPDF object from which they were created. A
QPDFObjectHandle may be direct or indirect. If indirect, the QPDFObject the PointerHolder initially points to is
a null pointer. In this case, the first attempt to access the underlying QPDFObject will result in the QPDFObject being
resolved via a call to the referenced QPDF instance. This makes it essentially impossible to make coding errors in which
certain things will work for some PDF files and not for others based on which objects are direct and which objects are
indirect.

Instances of QPDFObjectHandle can be directly created and modified using static factory methods in the
QPDFObjectHandle class. There are factory methods for each type of object as well as a convenience method
QPDFObjectHandle::parse that creates an object from a string representation of the object. Existing instances of
QPDFObjectHandle can also be modified in several ways. See comments in QPDFObjectHandle.hh for details.

An instance of QPDF is constructed by using the class’s default constructor. If desired, the QPDF object may be con-
figured with various methods that change its default behavior. Then the QPDF::processFile() method is passed
the name of a PDF file, which permanently associates the file with that QPDF object. A password may also be given
for access to password-protected files. QPDF does not enforce encryption parameters and will treat user and owner
passwords equivalently. Either password may be used to access an encrypted file. QPDF will allow recovery of a user
password given an owner password. The input PDF file must be seekable. (Output files written by QPDFWriter need
not be seekable, even when creating linearized files.) During construction, QPDF validates the PDF file’s header, and
then reads the cross reference tables and trailer dictionaries. The QPDF class keeps only the first trailer dictionary
though it does read all of them so it can check the /Prev key. QPDF class users may request the root object and the
trailer dictionary specifically. The cross reference table is kept private. Objects may then be requested by number of
by walking the object tree.

When a PDF file has a cross-reference stream instead of a cross-reference table and trailer, requesting the document’s
trailer dictionary returns the stream dictionary from the cross-reference stream instead.

There are some convenience routines for very common operations such as walking the page tree and returning a vector
of all page objects. For full details, please see the header files QPDF.hh and QPDFObjectHandle.hh. There are also
some additional helper classes that provide higher level API functions for certain document constructions. These are
discussed in Helper Classes.

11.3 Helper Classes

QPDF version 8.1 introduced the concept of helper classes. Helper classes are intended to contain higher level APIs that
allow developers to work with certain document constructs at an abstraction level above that of QPDFObjectHandle
while staying true to qpdf’s philosophy of not hiding document structure from the developer. As with qpdf in general,
the goal is to take away some of the more tedious bookkeeping aspects of working with PDF files, not to remove the need
for the developer to understand how the PDF construction in question works. The driving factor behind the creation of
helper classes was to allow the evolution of higher level interfaces in qpdf without polluting the interfaces of the main
top-level classes QPDF and QPDFObjectHandle.

There are two kinds of helper classes: document helpers and object helpers. Document helpers are constructed with
a reference to a QPDF object and provide methods for working with structures that are at the document level. Object
helpers are constructed with an instance of a QPDFObjectHandle and provide methods for working with specific types
of objects.

Examples of document helpers include QPDFPageDocumentHelper, which contains methods for operating on
the document’s page trees, such as enumerating all pages of a document and adding and removing pages; and
QPDFAcroFormDocumentHelper, which contains document-level methods related to interactive forms, such as enu-
merating form fields and creating mappings between form fields and annotations.

Examples of object helpers include QPDFPageObjectHelper for performing operations on pages such as page ro-
tation and some operations on content streams, QPDFFormFieldObjectHelper for performing operations related to
interactive form fields, and QPDFAnnotationObjectHelper for working with annotations.

54 Chapter 11. Design and Library Notes

QPDF, Release 10.6.3

It is always possible to retrieve the underlying QPDF reference from a document helper and the underlying
QPDFObjectHandle reference from an object helper. Helpers are designed to be helpers, not wrappers. The intention
is that, in general, it is safe to freely intermix operations that use helpers with operations that use the underlying ob-
jects. Document and object helpers do not attempt to provide a complete interface for working with the things they are
helping with, nor do they attempt to encapsulate underlying structures. They just provide a few methods to help with
error-prone, repetitive, or complex tasks. In some cases, a helper object may cache some information that is expensive
to gather. In such cases, the helper classes are implemented so that their own methods keep the cache consistent, and
the header file will provide a method to invalidate the cache and a description of what kinds of operations would make
the cache invalid. If in doubt, you can always discard a helper class and create a new one with the same underlying
objects, which will ensure that you have discarded any stale information.

By Convention, document helpers are called QPDFSomethingDocumentHelper and are derived from
QPDFDocumentHelper, and object helpers are called QPDFSomethingObjectHelper and are derived from
QPDFObjectHelper. For details on specific helpers, please see their header files. You can find them by looking at
include/qpdf/QPDF*DocumentHelper.hh and include/qpdf/QPDF*ObjectHelper.hh.

In order to avoid creation of circular dependencies, the following general guidelines are followed with helper classes:

• Core class interfaces do not know about helper classes. For example, no methods of QPDF or QPDFObjectHandle
will include helper classes in their interfaces.

• Interfaces of object helpers will usually not use document helpers in their interfaces. This is because it is much
more useful for document helpers to have methods that return object helpers. Most operations in PDF files start
at the document level and go from there to the object level rather than the other way around. It can sometimes
be useful to map back from object-level structures to document-level structures. If there is a desire to do this, it
will generally be provided by a method in the document helper class.

• Most of the time, object helpers don’t know about other object helpers. However, in some cases, one type
of object may be a container for another type of object, in which case it may make sense for the outer object
to know about the inner object. For example, there are methods in the QPDFPageObjectHelper that know
QPDFAnnotationObjectHelper because references to annotations are contained in page dictionaries.

• Any helper or core library class may use helpers in their implementations.

Prior to qpdf version 8.1, higher level interfaces were added as “convenience functions” in either QPDF or
QPDFObjectHandle. For compatibility, older convenience functions for operating with pages will remain in those
classes even as alternatives are provided in helper classes. Going forward, new higher level interfaces will be provided
using helper classes.

11.4 Implementation Notes

This section contains a few notes about QPDF’s internal implementation, particularly around what it does when it first
processes a file. This section is a bit of a simplification of what it actually does, but it could serve as a starting point
to someone trying to understand the implementation. There is nothing in this section that you need to know to use the
qpdf library.

QPDFObject is the basic PDF Object class. It is an abstract base class from which are derived classes for each type of
PDF object. Clients do not interact with Objects directly but instead interact with QPDFObjectHandle.

When the QPDF class creates a new object, it dynamically allocates the appropriate type of QPDFObject and immedi-
ately hands the pointer to an instance of QPDFObjectHandle. The parser reads a token from the current file position.
If the token is a not either a dictionary or array opener, an object is immediately constructed from the single token
and the parser returns. Otherwise, the parser iterates in a special mode in which it accumulates objects until it finds
a balancing closer. During this process, the “R” keyword is recognized and an indirect QPDFObjectHandle may be
constructed.

11.4. Implementation Notes 55

QPDF, Release 10.6.3

The QPDF::resolve() method, which is used to resolve an indirect object, may be invoked from the
QPDFObjectHandle class. It first checks a cache to see whether this object has already been read. If not, it reads
the object from the PDF file and caches it. It the returns the resulting QPDFObjectHandle. The calling object handle
then replaces its PointerHolder<QDFObject> with the one from the newly returned QPDFObjectHandle. In this
way, only a single copy of any direct object need exist and clients can access objects transparently without knowing
caring whether they are direct or indirect objects. Additionally, no object is ever read from the file more than once.
That means that only the portions of the PDF file that are actually needed are ever read from the input file, thus allowing
the qpdf package to take advantage of this important design goal of PDF files.

If the requested object is inside of an object stream, the object stream itself is first read into memory. Then the tokenizer
reads objects from the memory stream based on the offset information stored in the stream. Those individual objects
are cached, after which the temporary buffer holding the object stream contents are discarded. In this way, the first time
an object in an object stream is requested, all objects in the stream are cached.

The following example should clarify how QPDF processes a simple file.

• Client constructs QPDF pdf and calls pdf.processFile("a.pdf");.

• The QPDF class checks the beginning of a.pdf for a PDF header. It then reads the cross reference table mentioned
at the end of the file, ensuring that it is looking before the last %%EOF. After getting to trailer keyword, it invokes
the parser.

• The parser sees “<<”, so it calls itself recursively in dictionary creation mode.

• In dictionary creation mode, the parser keeps accumulating objects until it encounters “>>”. Each object that is
read is pushed onto a stack. If “R” is read, the last two objects on the stack are inspected. If they are integers,
they are popped off the stack and their values are used to construct an indirect object handle which is then pushed
onto the stack. When “>>” is finally read, the stack is converted into a QPDF_Dictionary which is placed in a
QPDFObjectHandle and returned.

• The resulting dictionary is saved as the trailer dictionary.

• The /Prev key is searched. If present, QPDF seeks to that point and repeats except that the new trailer dictionary
is not saved. If /Prev is not present, the initial parsing process is complete.

If there is an encryption dictionary, the document’s encryption parameters are initialized.

• The client requests root object. The QPDF class gets the value of root key from trailer dictionary and returns it.
It is an unresolved indirect QPDFObjectHandle.

• The client requests the /Pages key from root QPDFObjectHandle. The QPDFObjectHandle notices that it is
indirect so it asks QPDF to resolve it. QPDF looks in the object cache for an object with the root dictionary’s object
ID and generation number. Upon not seeing it, it checks the cross reference table, gets the offset, and reads the
object present at that offset. It stores the result in the object cache and returns the cached result. The calling
QPDFObjectHandle replaces its object pointer with the one from the resolved QPDFObjectHandle, verifies
that it a valid dictionary object, and returns the (unresolved indirect) QPDFObject handle to the top of the Pages
hierarchy.

As the client continues to request objects, the same process is followed for each new requested object.

56 Chapter 11. Design and Library Notes

QPDF, Release 10.6.3

11.5 Casting Policy

This section describes the casting policy followed by qpdf’s implementation. This is no concern to qpdf’s end users
and largely of no concern to people writing code that uses qpdf, but it could be of interest to people who are porting
qpdf to a new platform or who are making modifications to the code.

The C++ code in qpdf is free of old-style casts except where unavoidable (e.g. where the old-style cast is in a macro
provided by a third-party header file). When there is a need for a cast, it is handled, in order of preference, by rewriting
the code to avoid the need for a cast, calling const_cast, calling static_cast, calling reinterpret_cast, or
calling some combination of the above. As a last resort, a compiler-specific #pragma may be used to suppress a
warning that we don’t want to fix. Examples may include suppressing warnings about the use of old-style casts in code
that is shared between C and C++ code.

The QIntC namespace, provided by include/qpdf/QIntC.hh, implements safe functions for converting be-
tween integer types. These functions do range checking and throw a std::range_error, which is subclass of
std::runtime_error, if conversion from one integer type to another results in loss of information. There are many
cases in which we have to move between different integer types because of incompatible integer types used in interop-
erable interfaces. Some are unavoidable, such as moving between sizes and offsets, and others are there because of old
code that is too in entrenched to be fixable without breaking source compatibility and causing pain for users. QPDF
is compiled with extra warnings to detect conversions with potential data loss, and all such cases should be fixed by
either using a function from QIntC or a static_cast.

When the intention is just to switch the type because of exchanging data between incompatible interfaces, use QIntC.
This is the usual case. However, there are some cases in which we are explicitly intending to use the exact same bit
pattern with a different type. This is most common when switching between signed and unsigned characters. A lot
of qpdf’s code uses unsigned characters internally, but std::string and char are signed. Using QIntC::to_char
would be wrong for converting from unsigned to signed characters because a negative char value and the corresponding
unsigned char value greater than 127 mean the same thing. There are also cases in which we use static_castwhen
working with bit fields where we are not representing a numerical value but rather a bunch of bits packed together in
some integer type. Also note that size_t and long both typically differ between 32-bit and 64-bit environments, so
sometimes an explicit cast may not be needed to avoid warnings on one platform but may be needed on another. A
conversion with QIntC should always be used when the types are different even if the underlying size is the same.
QPDF’s automatic build builds on 32-bit and 64-bit platforms, and the test suite is very thorough, so it is hard to make
any of the potential errors here without being caught in build or test.

Non-const unsigned char* is used in the Pipeline interface. The pipeline interface has a write call that uses
unsigned char* without a const qualifier. The main reason for this is to support pipelines that make calls to third-
party libraries, such as zlib, that don’t include const in their interfaces. Unfortunately, there are many places in the
code where it is desirable to have const char*with pipelines. None of the pipeline implementations in qpdf currently
modify the data passed to write, and doing so would be counter to the intent of Pipeline, but there is nothing in the
code to prevent this from being done. There are places in the code where const_cast is used to remove the const-ness
of pointers going into Pipelines. This could theoretically be unsafe, but there is adequate testing to assert that it is
safe and will remain safe in qpdf’s code.

11.6 Encryption

Encryption is supported transparently by qpdf. When opening a PDF file, if an encryption dictionary exists, the QPDF
object processes this dictionary using the password (if any) provided. The primary decryption key is computed and
cached. No further access is made to the encryption dictionary after that time. When an object is read from a file, the
object ID and generation of the object in which it is contained is always known. Using this information along with
the stored encryption key, all stream and string objects are transparently decrypted. Raw encrypted objects are never
stored in memory. This way, nothing in the library ever has to know or care whether it is reading an encrypted file.

11.5. Casting Policy 57

QPDF, Release 10.6.3

An interface is also provided for writing encrypted streams and strings given an encryption key. This is used by
QPDFWriter when it rewrites encrypted files.

When copying encrypted files, unless otherwise directed, qpdf will preserve any encryption in force in the original
file. qpdf can do this with either the user or the owner password. There is no difference in capability based on which
password is used. When 40 or 128 bit encryption keys are used, the user password can be recovered with the owner
password. With 256 keys, the user and owner passwords are used independently to encrypt the actual encryption key,
so while either can be used, the owner password can no longer be used to recover the user password.

Starting with version 4.0.0, qpdf can read files that are not encrypted but that contain encrypted attachments, but it
cannot write such files. qpdf also requires the password to be specified in order to open the file, not just to extract
attachments, since once the file is open, all decryption is handled transparently. When copying files like this while
preserving encryption, qpdf will apply the file’s encryption to everything in the file, not just to the attachments. When
decrypting the file, qpdf will decrypt the attachments. In general, when copying PDF files with multiple encryption
formats, qpdf will choose the newest format. The only exception to this is that clear-text metadata will be preserved as
clear-text if it is that way in the original file.

One point of confusion some people have about encrypted PDF files is that encryption is not the same as password
protection. Password protected files are always encrypted, but it is also possible to create encrypted files that do not
have passwords. Internally, such files use the empty string as a password, and most readers try the empty string first to
see if it works and prompt for a password only if the empty string doesn’t work. Normally such files have an empty user
password and a non-empty owner password. In that way, if the file is opened by an ordinary reader without specification
of password, the restrictions specified in the encryption dictionary can be enforced. Most users wouldn’t even realize
such a file was encrypted. Since qpdf always ignores the restrictions (except for the purpose of reporting what they are),
qpdf doesn’t care which password you use. QPDF will allow you to create PDF files with non-empty user passwords
and empty owner passwords. Some readers will require a password when you open these files, and others will open the
files without a password and not enforce restrictions. Having a non-empty user password and an empty owner password
doesn’t really make sense because it would mean that opening the file with the user password would be more restrictive
than not supplying a password at all. QPDF also allows you to create PDF files with the same password as both the user
and owner password. Some readers will not ever allow such files to be accessed without restrictions because they never
try the password as the owner password if it works as the user password. Nonetheless, one of the powerful aspects of
qpdf is that it allows you to finely specify the way encrypted files are created, even if the results are not useful to some
readers. One use case for this would be for testing a PDF reader to ensure that it handles odd configurations of input
files.

11.7 Random Number Generation

QPDF generates random numbers to support generation of encrypted data. Starting in qpdf 10.0.0, qpdf uses the crypto
provider as its source of random numbers. Older versions used the OS-provided source of secure random numbers or,
if allowed at build time, insecure random numbers from stdlib. Starting with version 5.1.0, you can disable use of OS-
provided secure random numbers at build time. This is especially useful on Windows if you want to avoid a dependency
on Microsoft’s cryptography API. You can also supply your own random data provider. For details on how to do this,
please refer to the top-level README.md file in the source distribution and to comments in QUtil.hh.

58 Chapter 11. Design and Library Notes

QPDF, Release 10.6.3

11.8 Adding and Removing Pages

While qpdf’s API has supported adding and modifying objects for some time, version 3.0 introduces specific methods
for adding and removing pages. These are largely convenience routines that handle two tricky issues: pushing inheri-
table resources from the /Pages tree down to individual pages and manipulation of the /Pages tree itself. For details,
see addPage and surrounding methods in QPDF.hh.

11.9 Reserving Object Numbers

Version 3.0 of qpdf introduced the concept of reserved objects. These are seldom needed for ordinary operations, but
there are cases in which you may want to add a series of indirect objects with references to each other to a QPDF object.
This causes a problem because you can’t determine the object ID that a new indirect object will have until you add it to
the QPDF object with QPDF::makeIndirectObject. The only way to add two mutually referential objects to a QPDF
object prior to version 3.0 would be to add the new objects first and then make them refer to each other after adding
them. Now it is possible to create a reserved object using QPDFObjectHandle::newReserved. This is an indirect
object that stays “unresolved” even if it is queried for its type. So now, if you want to create a set of mutually referential
objects, you can create reservations for each one of them and use those reservations to construct the references. When
finished, you can call QPDF::replaceReserved to replace the reserved objects with the real ones. This functionality
will never be needed by most applications, but it is used internally by QPDF when copying objects from other PDF
files, as discussed in Copying Objects From Other PDF Files. For an example of how to use reserved objects, search
for newReserved in test_driver.cc in qpdf’s sources.

11.10 Copying Objects From Other PDF Files

Version 3.0 of qpdf introduced the ability to copy objects into a QPDF object from a different QPDF object, which we
refer to as foreign objects. This allows arbitrary merging of PDF files. The “from” QPDF object must remain valid
after the copy as discussed in the note below. The qpdf command-line tool provides limited support for basic page
selection, including merging in pages from other files, but the library’s API makes it possible to implement arbi-
trarily complex merging operations. The main method for copying foreign objects is QPDF::copyForeignObject.
This takes an indirect object from another QPDF and copies it recursively into this object while preserving all ob-
ject structure, including circular references. This means you can add a direct object that you create from scratch
to a QPDF object with QPDF::makeIndirectObject, and you can add an indirect object from another file with
QPDF::copyForeignObject. The fact that QPDF::makeIndirectObject does not automatically detect a foreign
object and copy it is an explicit design decision. Copying a foreign object seems like a sufficiently significant thing to
do that it should be done explicitly.

The other way to copy foreign objects is by passing a page from one QPDF to another by calling QPDF::addPage.
In contrast to QPDF::makeIndirectObject, this method automatically distinguishes between indirect objects in the
current file, foreign objects, and direct objects.

Please note: when you copy objects from one QPDF to another, the source QPDF object must remain valid until you have
finished with the destination object. This is because the original object is still used to retrieve any referenced stream
data from the copied object.

11.8. Adding and Removing Pages 59

QPDF, Release 10.6.3

11.11 Writing PDF Files

The qpdf library supports file writing of QPDF objects to PDF files through the QPDFWriter class. The QPDFWriter
class has two writing modes: one for non-linearized files, and one for linearized files. See Linearization for a description
of linearization is implemented. This section describes how we write non-linearized files including the creation of QDF
files (see QDF Mode.

This outline was written prior to implementation and is not exactly accurate, but it provides a correct “notional” idea
of how writing works. Look at the code in QPDFWriter for exact details.

• Initialize state:

– next object number = 1

– object queue = empty

– renumber table: old object id/generation to new id/0 = empty

– xref table: new id -> offset = empty

• Create a QPDF object from a file.

• Write header for new PDF file.

• Request the trailer dictionary.

• For each value that is an indirect object, grab the next object number (via an operation that returns and increments
the number). Map object to new number in renumber table. Push object onto queue.

• While there are more objects on the queue:

– Pop queue.

– Look up object’s new number n in the renumbering table.

– Store current offset into xref table.

– Write :samp:`{n}` 0 obj.

– If object is null, whether direct or indirect, write out null, thus eliminating unresolvable indirect object
references.

– If the object is a stream stream, write stream contents, piped through any filters as required, to a memory
buffer. Use this buffer to determine the stream length.

– If object is not a stream, array, or dictionary, write out its contents.

– If object is an array or dictionary (including stream), traverse its elements (for array) or values (for dictio-
naries), handling recursive dictionaries and arrays, looking for indirect objects. When an indirect object is
found, if it is not resolvable, ignore. (This case is handled when writing it out.) Otherwise, look it up in
the renumbering table. If not found, grab the next available object number, assign to the referenced object
in the renumbering table, and push the referenced object onto the queue. As a special case, when writing
out a stream dictionary, replace length, filters, and decode parameters as required.

Write out dictionary or array, replacing any unresolvable indirect object references with null (pdf spec says
reference to non-existent object is legal and resolves to null) and any resolvable ones with references to the
renumbered objects.

– If the object is a stream, write stream\n, the stream contents (from the memory buffer), and \
nendstream\n.

– When done, write endobj.

60 Chapter 11. Design and Library Notes

QPDF, Release 10.6.3

Once we have finished the queue, all referenced objects will have been written out and all deleted objects or unreferenced
objects will have been skipped. The new cross-reference table will contain an offset for every new object number from
1 up to the number of objects written. This can be used to write out a new xref table. Finally we can write out the
trailer dictionary with appropriately computed /ID (see spec, 8.3, File Identifiers), the cross reference table offset, and
%%EOF.

11.12 Filtered Streams

Support for streams is implemented through the Pipeline interface which was designed for this package.

When reading streams, create a series of Pipeline objects. The Pipeline abstract base requires implementation
write() and finish() and provides an implementation of getNext(). Each pipeline object, upon receiving data,
does whatever it is going to do and then writes the data (possibly modified) to its successor. Alternatively, a pipeline
may be an end-of-the-line pipeline that does something like store its output to a file or a memory buffer ignoring a
successor. For additional details, look at Pipeline.hh.

QPDF can read raw or filtered streams. When reading a filtered stream, the QPDF class creates a Pipeline object for
one of each appropriate filter object and chains them together. The last filter should write to whatever type of output is
required. The QPDF class has an interface to write raw or filtered stream contents to a given pipeline.

11.13 Object Accessor Methods

For general information about how to access instances of QPDFObjectHandle, please see the comments in
QPDFObjectHandle.hh. Search for “Accessor methods”. This section provides a more in-depth discussion of the
behavior and the rationale for the behavior.

Why were type errors made into warnings? When type checks were introduced into qpdf in the early days, it was
expected that type errors would only occur as a result of programmer error. However, in practice, type errors would
occur with malformed PDF files because of assumptions made in code, including code within the qpdf library and code
written by library users. The most common case would be chaining calls to getKey() to access keys deep within a
dictionary. In many cases, qpdf would be able to recover from these situations, but the old behavior often resulted in
crashes rather than graceful recovery. For this reason, the errors were changed to warnings.

Why even warn about type errors when the user can’t usually do anything about them? Type warnings are extremely
valuable during development. Since it’s impossible to catch at compile time things like typos in dictionary key names
or logic errors around what the structure of a PDF file might be, the presence of type warnings can save lots of developer
time. They have also proven useful in exposing issues in qpdf itself that would have otherwise gone undetected.

Can there be a type-safe ``QPDFObjectHandle``? It would be great if QPDFObjectHandle could be more strongly
typed so that you’d have to have check that something was of a particular type before calling type-specific accessor
methods. However, implementing this at this stage of the library’s history would be quite difficult, and it would make
a the common pattern of drilling into an object no longer work. While it would be possible to have a parallel interface,
it would create a lot of extra code. If qpdf were written in a language like rust, an interface like this would make a
lot of sense, but, for a variety of reasons, the qpdf API is consistent with other APIs of its time, relying on exception
handling to catch errors. The underlying PDF objects are inherently not type-safe. Forcing stronger type safety in
QPDFObjectHandle would ultimately cause a lot more code to have to be written and would like make software that
uses qpdf more brittle, and even so, checks would have to occur at runtime.

Why do type errors sometimes raise exceptions? The way warnings work in qpdf requires a QPDF object to be associated
with an object handle for a warning to be issued. It would be nice if this could be fixed, but it would require major
changes to the API. Rather than throwing away these conditions, we convert them to exceptions. It’s not that bad though.
Since any object handle that was read from a file has an associated QPDF object, it would only be type errors on objects
that were created explicitly that would cause exceptions, and in that case, type errors are much more likely to be the
result of a coding error than invalid input.

11.12. Filtered Streams 61

QPDF, Release 10.6.3

Why does the behavior of a type exception differ between the C and C++ API? There is no way to throw and catch
exceptions in C short of something like setjmp and longjmp, and that approach is not portable across language
barriers. Since the C API is often used from other languages, it’s important to keep things as simple as possible.
Starting in qpdf 10.5, exceptions that used to crash code using the C API will be written to stderr by default, and it
is possible to register an error handler. There’s no reason that the error handler can’t simulate exception handling in
some way, such as by using setjmp and longjmp or by setting some variable that can be checked after library calls are
made. In retrospect, it might have been better if the C API object handle methods returned error codes like the other
methods and set return values in passed-in pointers, but this would complicate both the implementation and the use of
the library for a case that is actually quite rare and largely avoidable.

How can I avoid type warnings altogether? For each getSomethingValue accessor that returns a value of the re-
quested type and issues a warning for objects of the wrong type, there is also a getValueAsSomethingmethod (since
qpdf 10.6) that returns false for objects of the wrong type and otherwise returns true and initializes a reference. These
methods never generate type warnings and provide an alternative to explicitly checking the type of an object before
calling an accessor method.

11.14 Smart Pointers

This section describes changes to the use of smart pointers that were made in qpdf 10.6.0 as well as some planned for
11.0.0.

Starting in qpdf 11, PointerHolder will be replaced with std::shared_ptr in qpdf’s public API. A backward-
compatible PointerHolder class will be provided that should make it possible for most code to remain unchanged.
PointerHolder may eventually be removed from qpdf entirely, but this will not happen for a while to make it easier
for people who need to support multiple versions of qpdf.

The POINTERHOLDER_TRANSITION preprocessor symbol has been introduced to help people transition from
PointerHolder to std::shared_ptr. After qpdf 11 is released, to prepare for a future qpdf without
PointerHolder and to let them know that it is no longer needed, a warning will be issued if <qpdf/PointerHolder.
hh> is included, though it will be possible to suppress the warning by defining POINTERHOLDER_TRANSITION. In
10.6.0, there are some steps you can perform to prepare, but no action is required.

The remainder of this section describes how to prepare if you want to eliminate PointerHolder from your code or
what to do if you want to stick with the old interfaces.

11.14.1 Changes in 10.6.0

In qpdf 10.6.0, the following changes have been made to PointerHolder to make its behavior closer to that of
std::shared_ptr:

• get() has been added as an alternative to getPointer()

• use_count() has been added as an alternative to getRefcount()

• A new global helper function make_pointer_holder behaves similarly to std::make_shared, so you can use
make_pointer_holder<T>(args...) to create a PointerHolder<T>with new T(args...) as the pointer.

• A new global helper function make_array_pointer_holder takes a size and creates a PointerHolder to an
array. It is a counterpart to the newly added QUtil::make_shared_array method, which does the same thing
with a std::shared_ptr.

PointerHolder has had a long-standing bug: a const PointerHolder<T>would only provide a T const*with its
getPointer method. This is incorrect and is not how standard library C++ smart pointers or regular pointers behave.
The correct semantics would be that a const PointerHolder<T> would not accept a new pointer after being created
(PointerHolder has always behaved correctly in this way) but would still allow you to modify the item being pointed
to. If you don’t want to mutate the thing it points to, use PointerHolder<T const> instead. The new get()method

62 Chapter 11. Design and Library Notes

QPDF, Release 10.6.3

behaves correctly. It is therefore not exactly the same as getPointer(), but it does behave the way get() behaves
with std::shared_ptr. This shouldn’t make any difference to any correctly written code.

11.14.2 Differences between PointerHolder and std::shared_ptr

Here is a list of things you need to think about when migrating from PointerHolder to std::shared_ptr. After the
list, we will discuss how to address each one using the POINTERHOLDER_TRANSITION preprocessor symbol or other
C++ coding techniques.

• PointerHolder<T> has an implicit constructor that takes a T*, which means you can assign a T* di-
rectly to a PointerHolder<T> or pass a T* to a function that expects a PointerHolder<T> as a pa-
rameter. std::shared_ptr<T> does not have this behavior, though you can still assign nullptr to a
std::shared_ptr<T> and compare nullptr with a std::shared_ptr<T>. Here are some examples of how
you might need to change your code:

Old code:

PointerHolder<X> x_p;
X* x = new X();
x_p = x;

New code:

auto x_p = std::make_shared<X>();
X* x = x_p.get();
// or, less safe, but closer:
std::shared_ptr<X> x_p;
X* x = new X();
x_p = std::shared_ptr<X>(x);

Old code:

PointerHolder<Base> base_p;
Derived* derived = new Derived();
base_p = derived;

New code:

std::shared_ptr<Base> base_p;
Derived* derived = new Derived();
base_p = std::shared_ptr<Base>(derived);

• PointerHolder<T> has getPointer() to get the underlying pointer. It also has the seldom-used
getRefcount() method to get the reference count. std::shared_ptr<T> has get() and use_count().
In qpdf 10.6, PointerHolder<T> also has would not be an issue unless you did this in your own code.

11.14. Smart Pointers 63

QPDF, Release 10.6.3

11.14.3 Addressing the Differences

If you need to support versions of qpdf prior to qpdf 10.6, you don’t need to take any action at this time, but it is
recommended that you at least address the implicit constructor issue since this can be done without breaking backward
compatibility. (Explicit construction of PointerHolder<T> is and always has been allowed.)

There are two significant things you can do to minimize the impact of switching from PointerHolder to
std::shared_ptr:

• Use auto and decltype whenever possible when working with PointerHolder variables that are exchanged
with the qpdf API.

• Use the POINTERHOLDER_TRANSITION preprocessor symbol to identify and resolve the differences described
above.

To use POINTERHOLDER_TRANSITION, you will need to #define it before including any qpdf header files or specify its
value as part of your build. The table below describes the values of POINTERHOLDER_TRANSITION. This information
is also summarized in include/qpdf/PointerHolder.hh, so you will have it handy without consulting this manual.

Table 1: POINTERHOLDER_TRANSITION values
value meaning
un-
de-
fined

Same as 0, but starting with qpdf 11.0, issues a warning

0 Provide a backward compatible PointerHolder and suppress all deprecation warnings
1 Make the PointerHolder<T>(T*) constructor explicit
2 Deprecate getPointer() and getRefcount()
3 Starting with qpdf 11.0, deprecate all uses of PointerHolder
4 Starting with qpdf 11.0, disable all functionality from qpdf/PointerHolder.hh so that #include-ing it

has no effect.

Based on the above, here is a procedure for preparing your code. This is the procedure that was used for the qpdf code
itself.

If you need to support versions of qpdf prior to 10.6, you can still do these steps:

• Find all occurrences of PointerHolder in the code. See whether any of them can just be outright replaced with
std::shared_ptr or std::unique_ptr. If you have been using qpdf prior to adopting C++11 and were using
PointerHolder as a general-purpose smart pointer, you may have cases that can be replaced in this way.

For example:

– Simple PointerHolder<T> construction can be replaced with either the equivalent
std::shared_ptr<T> construction or, if the constructor is public, with std::make_shared<T>(args.
..). If you are creating a smart pointer that is never copied, you may be able to use std::unique_ptr<T>
instead.

– Array allocations will have to be rewritten.

Allocating a PointerHolder to an array looked like this:

PointerHolder<X> p(true, new X[n]);

To allocate a std::shared_ptr to an array:

auto p = std::shared_ptr<X>(new X[n], std::default_delete<X[]>());
// If you don't mind using QUtil, there's QUtil::make_shared_array<X>(n).

(continues on next page)

64 Chapter 11. Design and Library Notes

QPDF, Release 10.6.3

(continued from previous page)

// If you are using c++20, you can use std::make_shared<X[]>(n)
// to get a std::shared_ptr<X[]> instead of a std::shared_ptr<X>.

To allocate a std::unique_ptr to an array:

auto p = std::make_unique<X[]>(n);
// or, if X has a private constructor:
auto p = std::unique_ptr<X[]>(new X[n]);

• If a PointerHolder<T> can’t be replaced with a standard library smart pointer, perhaps it can be declared using
auto or decltype so that, when the qpdf API changes, your code will just need to be recompiled.

• #define POINTERHOLDER_TRANSITION 1 to enable deprecation warnings for all implicit constructions of
PointerHolder<T> from a plain T*. When you find one, explicitly construct the PointerHolder<T>.

– Old code:

PointerHolder<X> x = new X();

– New code:

auto x = PointerHolder<X>(new X(...)); // all versions of qpdf
// or, if X(...) is public:
auto x = make_pointer_holder<X>(...); // only 10.6 and above

Other examples appear above.

If you need to support older versions of qpdf than 10.6, this is as far as you can go until qpdf 11 comes out.

If you only need to support the latest version of qpdf, proceed as follows:

• #define POINTERHOLDER_TRANSITION 2 to enable deprecation of getPointer() and getRefcount()

• Replace getPointer()with get() and getRefcount()with use_count(). These methods were not present
prior to 10.6.0.

When you have gotten your code to compile cleanly with POINTERHOLDER_TRANSITION=2, you are well on your way
to being ready for eliminating PointerHolder entirely after qpdf 11 is released.

11.14.4 After qpdf 11 is out

In the 10.6 manual, this section represents a plan and is subject to change. However, it has been tested in practice using
a version of the qpdf 11 PointerHolder on a branch, so it is likely to be accurate. In the meantime, think of this as a
preview.

First, make sure you have done the steps in the 10.6 section. (Note: once qpdf 11 comes out, the goal is to not have to
migrate to 10.6 first, so it is likely that these sections will be combined.)

If you are explicitly choosing to stick with the backward compatible PointerHolder for now, you should define
POINTERHOLDER_TRANSITION to 0 to suppress the warning from including qpdf/PointerHolder.hh. Be aware that
you may eventually have to deal with the transition, though the intention is to leave the compatibility layer in place for a
while. You should rebuild and test your code. There may be compiler errors if you have containers of PointerHolder,
but most code should compile without any changes. Even if you have errors, use of auto or decltype may en-
able you to write code that works with the old and new API without having to use conditional compilation. The
POINTERHOLDER_IS_SHARED_POINTER is defined in qpdf 11 if you #include <qpdf/PointerHolder.hh>.

11.14. Smart Pointers 65

QPDF, Release 10.6.3

If you want to support older versions of qpdf and still transition so that the backward-compatible PointerHolder
is not in use, you can separate old code and new code by testing with the POINTERHOLDER_IS_SHARED_POINTER
preprocessor symbol, as in

#ifdef POINTERHOLDER_IS_SHARED_POINTER
std::shared_ptr<X> x;
#else
PointerHolder<X> x;
#endif // POINTERHOLDER_IS_SHARED_POINTER
x = decltype(x)(new X())

or

#ifdef POINTERHOLDER_IS_SHARED_POINTER
auto x_p = std::make_shared<X>();
X* x = x_p.get();
#else
auto x_p = PointerHolder<X>(new X());
X* x = x_p.getPointer();
#endif // POINTERHOLDER_IS_SHARED_POINTER
x_p->doSomething();
x->doSomethingElse();

If you don’t need to support older versions of qpdf, you can proceed with these steps without protecting changes with
the preprocessor symbol. Here are the remaining changes.

• Make sure you have a clean build with POINTERHOLDER_TRANSITION set to 2. This means that you are us-
ing PointerHolder in a manner that is API-compatible with std::shared_ptr in all cases except for array
pointers.

• Replace all occurrences of PointerHolder with std::shared_ptr except in #include <qpdf/
PointerHolder.hh>

• Replace all occurrences of make_pointer_holder with std::make_shared

• Replace all occurrences of make_array_pointer_holderwith QUtil::make_shared_array. You will need
to include <qpdf/QUtil.hh> if you haven’t already done so.

• Make sure <memory> is included wherever you were including <qpdf/PointerHolder.hh>.

• If you were using any array PointerHolder<T> objects, replace them as above. You can let the compiler find
these for you.

• #define POINTERHOLDER_TRANSITION 3 to enable deprecation of all PointerHolder<T> construction.

• Build and test. Fix any remaining issues.

• If not supporting older versions of qpdf, remove all references to <qpdf/PointerHolder.hh>. Otherwise, you
will still need to include it but can #define POINTERHOLDER_TRANSITION 4 to prevent PointerHolder from
being defined. The POINTERHOLDER_IS_SHARED_POINTER symbol will still be defined.

66 Chapter 11. Design and Library Notes

QPDF, Release 10.6.3

11.14.5 Historical Background

Since its inception, the qpdf library used its own smart pointer class, PointerHolder. The PointerHolder class
was originally created long before std::shared_ptr existed, and qpdf itself didn’t start requiring a C++11 compiler
until version 9.1.0 released in late 2019. With current C++ versions, it is no longer desirable for qpdf to have its own
smart pointer class.

11.14. Smart Pointers 67

QPDF, Release 10.6.3

68 Chapter 11. Design and Library Notes

CHAPTER

TWELVE

QPDFJOB: A JOB-BASED INTERFACE

All of the functionality from the qpdf command-line executable is available from inside the C++ library using the
QPDFJob class. There are several ways to access this functionality:

• Command-line options

– Run the qpdf command line

– Use from the C++ API with QPDFJob::initializeFromArgv

– Use from the C API with qpdfjob_run_from_argv from qpdfjob-c.h. If you are calling from a
Windows-style main and have an argv array of wchar_t, you can use qpdfjob_run_from_wide_argv.

• The job JSON file format

– Use from the CLI with the --job-json-file parameter

– Use from the C++ API with QPDFJob::initializeFromJson

– Use from the C API with qpdfjob_run_from_json from qpdfjob-c.h

• The QPDFJob C++ API

If you can understand how to use the qpdf CLI, you can understand the QPDFJob class and the JSON file. qpdf
guarantees that all of the above methods are in sync. Here’s how it works:

Table 1: QPDFJob Interfaces
CLI JSON C++
--some-option "someOption": "" config()->someOption()
--some-option=value "someOption": "value" config()->someOption("value")
positional argument "otherOption": "value" config()->otherOption("value")

In the JSON file, the JSON structure is an object (dictionary) whose keys are command-line flags converted to
camelCase. Positional arguments have some corresponding key, which you can find by running qpdf with the
--job-json-help flag. For example, input and output files are named by positional arguments on the CLI. In the
JSON, they appear in the "inputFile" and "outputFile" keys. The following are equivalent:

CLI:

qpdf infile.pdf outfile.pdf \
--pages . other.pdf --password=x 1-5 -- \
--encrypt user owner 256 --print=low -- \
--object-streams=generate

Job JSON:

69

QPDF, Release 10.6.3

{
"inputFile": "infile.pdf",
"outputFile": "outfile.pdf",
"pages": [
{
"file": "."

},
{
"file": "other.pdf",
"password": "x",
"range": "1-5"

}
],
"encrypt": {
"userPassword": "user",
"ownerPassword": "owner",
"256bit": {
"print": "low"

}
},
"objectStreams": "generate"

}

C++ code:

#include <qpdf/QPDFJob.hh>
#include <qpdf/QPDFUsage.hh>
#include <iostream>

int main(int argc, char* argv[])
{

try
{

QPDFJob j;
j.config()

->inputFile("infile.pdf")
->outputFile("outfile.pdf")
->pages()
->pageSpec(".", "1-z")
->pageSpec("other.pdf", "1-5", "x")
->endPages()
->encrypt(256, "user", "owner")
->print("low")
->endEncrypt()
->objectStreams("generate")
->checkConfiguration();

j.run();
}
catch (QPDFUsage& e)
{

std::cerr << "configuration error: " << e.what() << std::endl;
return 2;

}
(continues on next page)

70 Chapter 12. QPDFJob: a Job-Based Interface

QPDF, Release 10.6.3

(continued from previous page)

catch (std::exception& e)
{

std::cerr << "other error: " << e.what() << std::endl;
return 2;

}
return 0;

}

Note the QPDFUsage exception above. This is thrown whenever a configuration error occurs. These exactly correspond
to usage messages issued by the qpdf CLI for things like omitting an output file, specifying –pages multiple times,
or other invalid combinations of options. QPDFUsage is thrown by the argv and JSON interfaces as well as the native
QPDFJob interface.

It is also possible to mix and match command-line options and JSON from the CLI. For example, you could create a
file called my-options.json containing the following:

{
"encrypt": {
"userPassword": "",
"ownerPassword": "owner",
"256bit": {
}

},
"objectStreams": "generate"

}

and use it with other options to create 256-bit encrypted (but unrestricted) files with object streams while specifying
other parameters on the command line, such as

qpdf infile.pdf outfile.pdf --job-json-file=my-options.json

See also examples/qpdf-job.cc in the source distribution as well as comments in QPDFJob.hh.

12.1 QPDFJob Design

This section describes some of the design rationale and history behind QPDFJob.

Documentation of QPDFJob is divided among three places:

• “HOW TO ADD A COMMAND-LINE ARGUMENT” in README-maintainer provides a quick reminder of
how to add a command-line argument.

• The source file generate_auto_job has a detailed explanation about how QPDFJob and generate_auto_job
work together.

• This chapter of the manual has other details.

Prior to qpdf version 10.6.0, the qpdf CLI executable had a lot of functionality built into it that was not callable from
the library as such. This created a number of problems:

• Some of the logic in qpdf.cc was pretty complex, such as image optimization, generating JSON output, and
many of the page manipulations. While those things could all be coded using the C++ API, there would be a lot
of duplicated code.

• Page splitting and merging will get more complicated over time as qpdf supports a wider range of document-level
options. It would be nice to be able to expose this to library users instead of baking it all into the CLI.

12.1. QPDFJob Design 71

QPDF, Release 10.6.3

• Users of other languages who just wanted an interface to do things that the CLI could do didn’t have a good way
to do it, such as just handing a library call a set of command-line options or an equivalent JSON object that could
be passed in as a string.

• The qpdf CLI itself was almost 8,000 lines of code. It needed to be refactored, cleaned up, and split.

• Exposing a new feature via the command-line required making lots of small edits to lots of small bits of code,
and it was easy to forget something. Adding a code generator, while complex in some ways, greatly reduces the
chances of error when extending qpdf.

Here are a few notes on some design decisions about QPDFJob and its various interfaces.

• Bare command-line options (flags with no parameter) map to config functions that take no options and to JSON
keys whose values are required to be the empty string. The rationale is that we can later change these bare
options to options that take an optional parameter without breaking backward compatibility in the CLI or the
JSON. Options that take optional parameters generate two config functions: one has no arguments, and one that
has a char const* argument. This means that adding an optional parameter to a previously bare option also
doesn’t break binary compatibility.

• Adding a new argument to job.yml automatically triggers almost everything by declaring and referencing things
that you have to implement. This way, once you get the code to compile and link, you know you haven’t forgotten
anything. There are two tricky cases:

– If an argument handler has to do something special, like call a nested config method or select an option
table, you have to implement it manually. This is discussed in generate_auto_job.

– When you add an option that has optional parameters or choices, both of the handlers described above are
declared, but only the one that takes an argument is referenced. You have to remember to implement the
one that doesn’t take an argument or else people will get a linker error if they try to call it. The assumption
is that things with optional parameters started out as bare, so the argument-less version is already there.

• If you have to add a new option that requires its own option table, you will have to do some extra work including
adding a new nested Config class, adding a config member variable to ArgParser in QPDFJob_argv.cc and
Handlers in QPDFJob_json.cc, and make sure that manually implemented handlers are consistent with each
other. It is best to add explicit test cases for all the various ways to get to the option.

72 Chapter 12. QPDFJob: a Job-Based Interface

CHAPTER

THIRTEEN

LINEARIZATION

This chapter describes how QPDF and QPDFWriter implement creation and processing of linearized PDFS.

13.1 Basic Strategy for Linearization

To avoid the incestuous problem of having the qpdf library validate its own linearized files, we have a special lin-
earized file checking mode which can be invoked via qpdf --check-linearization (or qpdf --check). This
mode reads the linearization parameter dictionary and the hint streams and validates that object ordering, parameters,
and hint stream contents are correct. The validation code was first tested against linearized files created by external
tools (Acrobat and pdlin) and then used to validate files created by QPDFWriter itself.

13.2 Preparing For Linearization

Before creating a linearized PDF file from any other PDF file, the PDF file must be altered such that all page attributes
are propagated down to the page level (and not inherited from parents in the /Pages tree). We also have to know which
objects refer to which other objects, being concerned with page boundaries and a few other cases. We refer to this part
of preparing the PDF file as optimization, discussed in Optimization. Note the, in this context, the term optimization is
a qpdf term, and the term linearization is a term from the PDF specification. Do not be confused by the fact that many
applications refer to linearization as optimization or web optimization.

When creating linearized PDF files from optimized PDF files, there are really only a few issues that need to be dealt
with:

• Creation of hints tables

• Placing objects in the correct order

• Filling in offsets and byte sizes

13.3 Optimization

In order to perform various operations such as linearization and splitting files into pages, it is necessary to know which
objects are referenced by which pages, page thumbnails, and root and trailer dictionary keys. It is also necessary to
ensure that all page-level attributes appear directly at the page level and are not inherited from parents in the pages tree.

We refer to the process of enforcing these constraints as optimization. As mentioned above, note that some applications
refer to linearization as optimization. Although this optimization was initially motivated by the need to create linearized
files, we are using these terms separately.

73

QPDF, Release 10.6.3

PDF file optimization is implemented in the QPDF_optimization.cc source file. That file is richly commented and
serves as the primary reference for the optimization process.

After optimization has been completed, the private member variables obj_user_to_objects and
object_to_obj_users in QPDF have been populated. Any object that has more than one value in the
object_to_obj_users table is shared. Any object that has exactly one value in the object_to_obj_users
table is private. To find all the private objects in a page or a trailer or root dictionary key, one merely has make this
determination for each element in the obj_user_to_objects table for the given page or key.

Note that pages and thumbnails have different object user types, so the above test on a page will not include objects
referenced by the page’s thumbnail dictionary and nothing else.

13.4 Writing Linearized Files

We will create files with only primary hint streams. We will never write overflow hint streams. (As of PDF version 1.4,
Acrobat doesn’t either, and they are never necessary.) The hint streams contain offset information to objects that point
to where they would be if the hint stream were not present. This means that we have to calculate all object positions
before we can generate and write the hint table. This means that we have to generate the file in two passes. To make
this reliable, QPDFWriter in linearization mode invokes exactly the same code twice to write the file to a pipeline.

In the first pass, the target pipeline is a count pipeline chained to a discard pipeline. The count pipeline simply passes
its data through to the next pipeline in the chain but can return the number of bytes passed through it at any intermediate
point. The discard pipeline is an end of line pipeline that just throws its data away. The hint stream is not written and
dummy values with adequate padding are stored in the first cross reference table, linearization parameter dictionary,
and /Prev key of the first trailer dictionary. All the offset, length, object renumbering information, and anything else
we need for the second pass is stored.

At the end of the first pass, this information is passed to the QPDF class which constructs a compressed hint stream in a
memory buffer and returns it. QPDFWriter uses this information to write a complete hint stream object into a memory
buffer. At this point, the length of the hint stream is known.

In the second pass, the end of the pipeline chain is a regular file instead of a discard pipeline, and we have known values
for all the offsets and lengths that we didn’t have in the first pass. We have to adjust offsets that appear after the start of
the hint stream by the length of the hint stream, which is known. Anything that is of variable length is padded, with the
padding code surrounding any writing code that differs in the two passes. This ensures that changes to the way things
are represented never results in offsets that were gathered during the first pass becoming incorrect for the second pass.

Using this strategy, we can write linearized files to a non-seekable output stream with only a single pass to disk or
wherever the output is going.

13.5 Calculating Linearization Data

Once a file is optimized, we have information about which objects access which other objects. We can then process
these tables to decide which part (as described in “Linearized PDF Document Structure” in the PDF specification) each
object is contained within. This tells us the exact order in which objects are written. The QPDFWriter class asks for
this information and enqueues objects for writing in the proper order. It also turns on a check that causes an exception
to be thrown if an object is encountered that has not already been queued. (This could happen only if there were a bug
in the traversal code used to calculate the linearization data.)

74 Chapter 13. Linearization

QPDF, Release 10.6.3

13.6 Known Issues with Linearization

There are a handful of known issues with this linearization code. These issues do not appear to impact the behavior
of linearized files which still work as intended: it is possible for a web browser to begin to display them before they
are fully downloaded. In fact, it seems that various other programs that create linearized files have many of these same
issues. These items make reference to terminology used in the linearization appendix of the PDF specification.

• Thread Dictionary information keys appear in part 4 with the rest of Threads instead of in part 9. Objects in part
9 are not grouped together functionally.

• We are not calculating numerators for shared object positions within content streams or interleaving them within
content streams.

• We generate only page offset, shared object, and outline hint tables. It would be relatively easy to add some
additional tables. We gather most of the information needed to create thumbnail hint tables. There are comments
in the code about this.

13.7 Debugging Note

The qpdf --show-linearization command can show the complete contents of linearization hint streams. To look
at the raw data, you can extract the filtered contents of the linearization hint tables using qpdf --show-object=n
--filtered-stream-data. Then, to convert this into a bit stream (since linearization tables are bit streams written
without regard to byte boundaries), you can pipe the resulting data through the following perl code:

use bytes;
binmode STDIN;
undef $/;
my $a = <STDIN>;
my @ch = split(//, $a);
map { printf("%08b", ord($_)) } @ch;
print "\n";

13.6. Known Issues with Linearization 75

QPDF, Release 10.6.3

76 Chapter 13. Linearization

CHAPTER

FOURTEEN

OBJECT AND CROSS-REFERENCE STREAMS

This chapter provides information about the implementation of object stream and cross-reference stream support in
qpdf.

14.1 Object Streams

Object streams can contain any regular object except the following:

• stream objects

• objects with generation > 0

• the encryption dictionary

• objects containing the /Length of another stream

In addition, Adobe reader (at least as of version 8.0.0) appears to not be able to handle having the document catalog
appear in an object stream if the file is encrypted, though this is not specifically disallowed by the specification.

There are additional restrictions for linearized files. See Implications for Linearized Files for details.

The PDF specification refers to objects in object streams as “compressed objects” regardless of whether the object
stream is compressed.

The generation number of every object in an object stream must be zero. It is possible to delete and replace an object
in an object stream with a regular object.

The object stream dictionary has the following keys:

• /N: number of objects

• /First: byte offset of first object

• /Extends: indirect reference to stream that this extends

Stream collections are formed with /Extends. They must form a directed acyclic graph. These can be used for
semantic information and are not meaningful to the PDF document’s syntactic structure. Although qpdf preserves
stream collections, it never generates them and doesn’t make use of this information in any way.

The specification recommends limiting the number of objects in object stream for efficiency in reading and decoding.
Acrobat 6 uses no more than 100 objects per object stream for linearized files and no more 200 objects per stream for
non-linearized files. QPDFWriter, in object stream generation mode, never puts more than 100 objects in an object
stream.

Object stream contents consists of N pairs of integers, each of which is the object number and the byte offset of the
object relative to the first object in the stream, followed by the objects themselves, concatenated.

77

QPDF, Release 10.6.3

14.2 Cross-Reference Streams

For non-hybrid files, the value following startxref is the byte offset to the xref stream rather than the word xref.

For hybrid files (files containing both xref tables and cross-reference streams), the xref table’s trailer dictionary contains
the key /XRefStmwhose value is the byte offset to a cross-reference stream that supplements the xref table. A PDF 1.5-
compliant application should read the xref table first. Then it should replace any object that it has already seen with any
defined in the xref stream. Then it should follow any /Prev pointer in the original xref table’s trailer dictionary. The
specification is not clear about what should be done, if anything, with a /Prev pointer in the xref stream referenced by
an xref table. The QPDF class ignores it, which is probably reasonable since, if this case were to appear for any sensible
PDF file, the previous xref table would probably have a corresponding /XRefStm pointer of its own. For example, if
a hybrid file were appended, the appended section would have its own xref table and /XRefStm. The appended xref
table would point to the previous xref table which would point the /XRefStm, meaning that the new /XRefStm doesn’t
have to point to it.

Since xref streams must be read very early, they may not be encrypted, and the may not contain indirect objects for
keys required to read them, which are these:

• /Type: value /XRef

• /Size: value n+1: where n is highest object number (same as /Size in the trailer dictionary)

• /Index (optional): value [:samp:`{n count}` ...] used to determine which objects’ information is stored
in this stream. The default is [0 /Size].

• /Prev: value offset: byte offset of previous xref stream (same as /Prev in the trailer dictionary)

• /W [...]: sizes of each field in the xref table

The other fields in the xref stream, which may be indirect if desired, are the union of those from the xref table’s trailer
dictionary.

14.2.1 Cross-Reference Stream Data

The stream data is binary and encoded in big-endian byte order. Entries are concatenated, and each entry has a length
equal to the total of the entries in /W above. Each entry consists of one or more fields, the first of which is the type of
the field. The number of bytes for each field is given by /W above. A 0 in /W indicates that the field is omitted and has
the default value. The default value for the field type is “1”. All other default values are “0”.

PDF 1.5 has three field types:

• 0: for free objects. Format: 0 obj next-generation, same as the free table in a traditional cross-reference
table

• 1: regular non-compressed object. Format: 1 offset generation

• 2: for objects in object streams. Format: 2 object-stream-number index, the number of object stream
containing the object and the index within the object stream of the object.

It seems standard to have the first entry in the table be 0 0 0 instead of 0 0 ffff if there are no deleted objects.

78 Chapter 14. Object and Cross-Reference Streams

QPDF, Release 10.6.3

14.3 Implications for Linearized Files

For linearized files, the linearization dictionary, document catalog, and page objects may not be contained in object
streams.

Objects stored within object streams are given the highest range of object numbers within the main and first-page
cross-reference sections.

It is okay to use cross-reference streams in place of regular xref tables. There are on special considerations.

Hint data refers to object streams themselves, not the objects in the streams. Shared object references should also be
made to the object streams. There are no reference in any hint tables to the object numbers of compressed objects
(objects within object streams).

When numbering objects, all shared objects within both the first and second halves of the linearized files must be
numbered consecutively after all normal uncompressed objects in that half.

14.4 Implementation Notes

There are three modes for writing object streams: disable, preserve, and generate. In disable mode, we do not
generate any object streams, and we also generate an xref table rather than xref streams. This can be used to generate
PDF files that are viewable with older readers. In preserve mode, we write object streams such that written object
streams contain the same objects and /Extends relationships as in the original file. This is equal to disable if the file
has no object streams. In generate, we create object streams ourselves by grouping objects that are allowed in object
streams together in sets of no more than 100 objects. We also ensure that the PDF version is at least 1.5 in generate
mode, but we preserve the version header in the other modes. The default is preserve.

We do not support creation of hybrid files. When we write files, even in preserve mode, we will lose any xref tables
and merge any appended sections.

14.3. Implications for Linearized Files 79

QPDF, Release 10.6.3

80 Chapter 14. Object and Cross-Reference Streams

CHAPTER

FIFTEEN

PDF ENCRYPTION

This chapter discusses PDF encryption in a general way with an angle toward how it works in qpdf. This chapter is
not intended to replace the PDF specification. Please consult the spec for full details.

15.1 PDF Encryption Concepts

Encryption Encryption is the replacement of clear text with encrypted text, also known as ciphertext. The clear text
may be retrieved from the ciphertext if the encryption key is known.

PDF files consist of an object structure. PDF objects may be of a variety of types including (among others)
numbers, boolean values, names, arrays, dictionaries, strings, and streams. In a PDF file, only strings and streams
are encrypted.

Security Handler Since the inception of PDF, there have been several modifications to the way files are encrypted.
Encryption is handled by a security handler. The standard security handler is password-based. This is the only
security handler implemented by qpdf, and this material is all focused on the standard security handler. There
are various flags that control the specific details of encryption with the standard security handler. These are
discussed below.

Encryption Key This refers to the actual key used by the encryption and decryption algorithms. It is distinct from
the password. The main encryption key is generated at random and stored encrypted in the PDF file. The
passwords used to protect a PDF file, if any, are used to protect the encryption key. This design makes it possible
to use different passwords (e.g., user and owner passwords) to retrieve the encryption key or even to change the
password on a file without changing the encryption key. qpdf can expose the encryption key when run with the
--show-encryption-key option and can accept a hex-encoded encryption key in place of a password when
run with the --password-is-hex-key option.

Password Protection Password protection is distinct from encryption. This point is often misunderstood. A PDF file
can be encrypted without being password-protected. The intent of PDF encryption was that there would be two
passwords: a user password and an owner password. Either password can be used to retrieve the encryption key.
A conforming reader is supposed to obey the security restrictions if the file is opened using the user password but
not if the file is opened with the owner password. qpdf makes no distinction between which password is used to
open the file. The distinction made by conforming readers between the user and owner password is what makes
it common to create encrypted files with no password protection. This is done by using the empty string as the
user password and some secret string as the owner password. When a user opens the PDF file, the empty string
is used to retrieve the encryption key, making the file usable, but a conforming reader restricts certain operations
from the user.

What does all this mean? Here are a few things to realize.

• Since the user password and the owner password are both used to recover the single encryption key, there is
fundamentally no way to prevent an application from disregarding the security restrictions on a file. Any software
that can read the encrypted file at all has the encryption key. Therefore, the security of the restrictions placed

81

QPDF, Release 10.6.3

on PDF files is solely enforced by the software. Any open source PDF reader could be trivially modified to
ignore the security restrictions on a file. The PDF specification is clear about this point. This means that PDF
restrictions on non-password-protected files only restrict users who don’t know how to circumvent them.

• If a file is password-protected, you have to know at least one of the user or owner password to retrieve the
encryption key. However, in the case of 40-bit encryption, the actual encryption key is only 5 bytes long and can
be easily brute-forced. As such, files encrypted with 40-bit encryption are not secure regardless of how strong
the password is. With 128-bit encryption, the default security handler uses RC4 encryption, which is also known
to be insecure. As such, the only way to securely encrypt a PDF file using the standard security handler (as of the
last review of this chapter in 2022) is to use AES encryption. This is the only supported algorithm with 256-bit
encryption, and it can be selected to be used with 128-bit encryption as well. However there is no reason to use
128-bit encryption with AES. If you are going to use AES, just use 256-bit encryption instead. The security of a
256-bit AES-encrypted PDF file with a strong password is comparable to using a general-purpose encryption tool
like gpg or openssl to encrypt the PDF file with the same password, but the advantage of using PDF encryption
is that no software is required beyond a regular PDF viewer.

15.2 PDF Encryption Details

This section describes a few details about PDF encryption. It does not describe all the details. For that, read the
PDF specification. The details presented here, however, should go a long way toward helping a casual user/developer
understand what’s going on with encrypted PDF files.

Here are more concepts to understand.

Algorithm parameters V and R There are two parameters that control the details of encryption using the standard
security handler: V and R.

V is a code specifying the algorithms that are used for encrypting the file, handling keys, etc. It may have any of
the following values:

Table 1: Encryption Algorithms: V
V Meaning
1 The original algorithm, which encrypted files using 40-bit keys.
2 An extension of the original algorithm allowing longer keys. Introduced in PDF 1.4.
3 An unpublished algorithm that permits file encryption key lengths ranging from 40 to 128 bits.

Introduced in PDF 1.4. qpdf is believed to be able to read files with V = 3 but does not write such
files.

4 An extension of the algorithm that allows it to be parameterized by additional rules for handling
strings and streams. Introduced in PDF 1.5.

5 An algorithm that allows specification of separate security handlers for strings and streams as well
as embedded files, and which supports 256-bit keys. Introduced in PDF 1.7 extension level 3 and
later extended in extension level 8. This is the encryption system in the PDF 2.0 specification,
ISO-32000.

R is a code specifying the revision of the standard handler. It is tightly coupled with the value of V. R may have
any of the following values:

82 Chapter 15. PDF Encryption

QPDF, Release 10.6.3

Table 2: Relationship between R and V
R Expected V
2 V must be 1
3 V must be 2 or 3
4 V must be 4
5 Vmust be 5; this extension was never fully specified and existed for a short time in some versions

of Acrobat. qpdf is able to read and write this format, but it should not be used for any purpose
other than testing compatibility with the format.

6 Vmust be 5. This is the only value that is not deprecated in the PDF 2.0 specification, ISO-32000.

Encryption Dictionary Encrypted PDF files have an encryption dictionary. There are several fields, but these are the
important ones for our purposes:

• V and R as described above

• O, U, OE, UE: values used by the algorithms that recover the encryption key from the user and owner pass-
word. Which of these are defined and how they are used vary based on the value of R.

• P: a bit field that describes which restrictions are in place. This is discussed below in PDF Security Re-
strictions

Encryption Algorithms PDF files may be encrypted with the obsolete, insecure RC4 algorithm or the more secure
AES algorithm. See also Weak Cryptography for a discussion. 40-bit encryption always uses RC4. 128-bit can
use either RC4 (the default for compatibility reasons) or, starting with PDF 1.6, AES. 256-bit encryption always
uses AES.

15.3 PDF Security Restrictions

PDF security restrictions are described by a bit field whose value is stored in the P field in the encryption dictionary.
The value of P is used by the algorithms to recover the encryption key given the password, which makes the value of
P tamper-resistent.

P is a 32-bit integer, treated as a signed twos-complement number. A 1 in any bit position means the permission is
granted. The PDF specification numbers the bits from 1 (least significant bit) to 32 (most significant bit) rather than
the more customary 0 to 31. For consistency with the spec, the remainder of this section uses the 1-based numbering.

Only bits 3, 4, 5, 6, 9, 10, 11, and 12 are used. All other bits are set to 1. Since bit 32 is always set to 1, the value of P
is always a negative number. (qpdf recognizes a positive number on behalf of buggy writers that treat P as unsigned.
Such files have been seen in the wild.)

Here are the meanings of the bit positions. All bits not listed must have the value 1 except bits 1 and 2, which must have
the value 0. However, the values of bits other than those in the table are ignored, so having incorrect values probably
doesn’t break anything in most cases. A value of 1 indicates that the permission is granted.

15.3. PDF Security Restrictions 83

QPDF, Release 10.6.3

Table 3: P Bit Values
Bit Meaning
3 for R = 2 printing; for R ≥ 3, printing at low resolution
4 modifying the document except as controlled by bits 6, 9, and 11
5 extracting text and graphics for purposes other than accessibility to visually impaired users
6 add or modify annotations, fill in interactive form fields; if bit 4 is also set, create or modify interactive

form fields
9 for R ≥ 3, fill in interactive form fields even if bit 6 is clear
10 not used; formerly granted permission to extract material for accessibility, but the specification now

disallows restriction of accessibility, and conforming readers are to treat this bit as if it is set regardless
of its value

11 for R ≥ 3, assemble document including inserting, rotating, or deleting pages or creating document
outlines or thumbnail images

12 for R ≥ 3, allow printing at full resolution

15.4 How qpdf handles security restrictions

The section describes exactly what the qpdf library does with regard to P based on the various settings of different
security options.

• Start with all bits set except bits 1 and 2, which are cleared

• Clear bits and described in the table below:

Table 4: Command-line Arguments and P Bit Values
R Argument Bits Cleared
R = 2 --print=n 3
R = 2 --modify=n 4
R = 2 --extract=n 5
R = 2 --annotate=n 6
R = 3 --accessibility=n 10
R ≥ 4 --accessibility=n ignored
R ≥ 3 --extract=n 5
R ≥ 3 --print=none 3, 12
R ≥ 3 --print=low 12
R ≥ 3 --modify=none 4, 6, 9, 11
R ≥ 3 --modify=assembly 4, 6, 9
R ≥ 3 --modify=form 4, 6
R ≥ 3 --modify=annotate 4
R ≥ 3 --assemble=n 11
R ≥ 3 --annotate=n 6
R ≥ 3 --form=n 9
R ≥ 3 --modify-other=n 4

Options to qpdf, both at the CLI and library level, allow more granular clearing of permission bits than do most tools,
including Adobe Acrobat. As such, PDF viewers may respond in surprising ways based on options passed to qpdf. If
you observe this, it is probably not because of a bug in qpdf.

84 Chapter 15. PDF Encryption

QPDF, Release 10.6.3

15.5 User and Owner Passwords

When you use qpdf to show encryption parameters and you open a file with the owner password, sometimes qpdf
reveals the user password, and sometimes it doesn’t. Here’s why.

For V < 5, the user password is actually stored in the PDF file encrypted with a key that is derived from the owner
password, and the main encryption key is encrypted using a key derived from the user password. When you open a
PDF file, the reader first tries to treat the given password as the user password, using it to recover the encryption key. If
that works, you’re in with restrictions (assuming the reader chooses to enforce them). If it doesn’t work, then the reader
treats the password as the owner password, using it to recover the user password, and then uses the user password to
retrieve the encryption key. This is why creating a file with the same user password and owner password with V < 5
results in a file that some readers will never allow you to open as the owner. When an empty owner password is given
at file creation, the user password is used as both the user and owner password. Typically when a reader encounters a
file with V < 5, it will first attempt to treat the empty string as a user password. If that works, the file is encrypted but
not password-protected. If it doesn’t work, then a password prompt is given.

For V ≥ 5, the main encryption key is independently encrypted using the user password and the owner password.
There is no way to recover the user password from the owner password. Restrictions are imposed or not depending on
which password was used. In this case, the password supplied, if any, is tried both as the user password and the owner
password, and whichever works is used. Typically the password is tried as the owner password first. (This is what the
PDF specification says to do.) As such, specifying a user password and leaving the owner password blank results in a
file that is opened as owner with no password, effectively rendering the security restrictions useless. This is why qpdf
requires you to pass --allow-insecure to create a file with an empty owner password when 256-bit encryption is in
use.

15.5. User and Owner Passwords 85

QPDF, Release 10.6.3

86 Chapter 15. PDF Encryption

CHAPTER

SIXTEEN

RELEASE NOTES

For a detailed list of changes, please see the file ChangeLog in the source distribution.

10.6.3: March 8, 2022

• Announcement of upcoming change:

– qpdf 11 will be built with cmake. The qpdf 11 documentation will include detailed migration instruc-
tions.

• Bug fixes:

– Recognize strings explicitly encoded as UTF-8 as allowed by the PDF 2.0 spec.

– Fix edge cases with appearance stream generation for form fields whose /DA field lacks proper font
size specification or that specifies auto sizing. At this time, qpdf does not support auto sizing.

– Minor, non-functional changes to build and documentation to accommodate a wider range of compi-
lation environments in preparation for migration to cmake.

10.6.2: February 16, 2022

• Bug fixes:

– Recognize strings encoded as UTF-16LE as Unicode. The PDF spec only allows UTF-16BE, but most
readers accept UTF16-LE as well.

– Fix a regression in command-line argument parsing to restore a previously undocumented behavior
that some people were relying on.

– Fix one more problem with mapping Unicode to PDF doc encoding

10.6.1: February 11, 2022

• Fix compilation errors on some platforms

10.6.0: February 9, 2022

• Preparation for replacement of PointerHolder

The next major release of qpdf will replace PointerHolder with std::shared_ptr across all of qpdf’s
public API. No action is required at this time, but if you’d like to prepare, read the comments in include/
qpdf/PointerHolder.hh and see Smart Pointers for details on what you can do now to create code that
will continue to work with older versions of qpdf and be easier to switch over to qpdf 11 when it comes
out.

• Preparation for a new JSON output version

– The --json option takes an optional parameter indicating the version of the JSON output. At present,
there is only one JSON version (1), but there are plans for an updated version in a coming release.
Until the release of qpdf 11, the default value of --json is 1 for compatibility. Once qpdf 11 is out,

87

QPDF, Release 10.6.3

the default version will be latest. If you are depending on the exact format of --json for code, you
should start using --json=1 in preparation.

• New QPDFJob API exposes CLI functionality

Prior to qpdf 10.6, a lot of the functionality implemented by the qpdf CLI executable was built into the
executable itself and not available from the library. qpdf 10.6 introduces a new object, QPDFJob, that
exposes all of the command-line functionality. This includes a native QPDFJob API with fluent interfaces
that mirror the command-line syntax, a JSON syntax for specifying the equivalent of a command-line
invocation, and the ability to run a qpdf “job” by passing a null-terminated array of qpdf command-line
options. The command-line argument array and JSON methods of invoking QPDFJob are also exposed to
the C API. For details, see QPDFJob: a Job-Based Interface.

• Other Library Enhancements

– New QPDFObjectHandle literal syntax using C++’s user-defined literal syntax. You can use

auto oh = "<</Some (valid) /PDF (object)>>"_qpdf;

to create a QPDFObjectHandle. It is a shorthand for QPDFObjectHandle::parse.

– Preprocessor symbols QPDF_MAJOR_VERSION, QPDF_MINOR_VERSION, and QPDF_PATCH_VERSION
are now available and can be used to make it easier to write code that supports multiple versions of
qpdf. You don’t have to include any new header files to get these, which makes it possible to write
code like this:

#if !defined(QPDF_MAJOR_VERSION) || QPDF_MAJOR_VERSION < 11
// do something using qpdf 10 or older API

#else
// do something using qpdf 11 or newer API

#endif

Since this was introduced only in qpdf version 10.6.0, testing for an undefined value of
QPDF_MAJOR_VERSION is equivalent to detecting a version prior to 10.6.0.

The symbol QPDF_VERSION is also defined as a string containing the same version number that is re-
turned by QPDF::QPDFVersion. Note that QPDF_VERSIONmay differ from QPDF::QPDFVersion()
if your header files and library are out of sync with each other.

– The method QPDF::QPDFVersion and corresponding C API call qpdf_get_qpdf_version are now
both guaranteed to return a reference (or pointer) to a static string, so you don’t have to copy these if
you are using them in your software. They have always returned static values. Now the fact that they
return static values is part of the API contract and can be safely relied upon.

– New accessor methods for QPDFObjectHandle. In addition to the traditional ones, such as
getIntValue, getName, etc., there are a family of new accessors whose names are of the form
getValueAsX. The difference in behavior is as follows:

∗ The older accessor methods, which will continue to be supported, return the value of the object if
it is the expected type. Otherwise, they return a fallback value and issue a warning.

∗ The newer accessor methods return a boolean indicating whether or not the object is of the expected
type. If it is, a reference to a variable of the correct type is initialized.

In many cases, the new interfaces will enable more compact code and will also never generate type
warnings. Thanks to M. Holger for contributing these accessors. Search for getValueAs in include/
qpdf/QPDFObjectHandle.hh for a complete list.

These are also exposed in the C API in functions whose names start with qpdf_oh_get_value_as.

88 Chapter 16. Release Notes

QPDF, Release 10.6.3

– New convenience methods in QPDFObjectHandle: isDictionaryOfType, isStreamOfType, and
isNameAndEquals allow more compact querying of dictionaries. Also added to the C API:
qpdf_oh_is_dictionary_of_type and qpdf_oh_is_name_and_equals. Thanks to M. Holger
for the contribution.

– New convenience method in QPDFObjectHandle: getKeyIfDict returns null when called on null
and otherwise calls getKey. This makes it easier to access optional, lower-level dictionaries. It is
exposed in the C API qpdf_oh_get_key_if_dict. Thanks to M. Holger for the contribution.

– New functions added to QUtil: make_shared_cstr and make_unique_cstr copy std::string
to std::shared_ptr<char> and std::unique_ptr<char[]>. These are alternatives to the ex-
isting QUtil::copy_string function which offer other ways to get a C string with safer memory
management.

– New function QUtil::file_can_be_opened tests to see whether a file can actually be opened by
attempting to open it and close it again.

– There is a new version of QUtil::call_main_from_wmain that takes a const argv array and calls
a main that takes a const argv array.

– QPDF::emptyPDF has been exposed to the C API as qpdf_empty_pdf. This makes it possible to
create a PDF from scratch with the C API.

– New C API functions qpdf_oh_get_binary_utf8_value and
qpdf_oh_new_binary_unicode_string take length parameters, which makes it possible to
handle UTF-8-encoded C strings with embedded NUL characters. Thanks to M. Holger for the
contribution.

– There is a new PDFVersion class for representing a PDF version number with the ability to com-
pare and order PDF versions. Methods QPDF::getVersionAsPDFVersion and a new version of
QPDFWriter::setMinimumPDFVersion use it. This makes it easier to create an output file whose
PDF version is the maximum of the versions across all the input files that contributed to it.

– The JSON object in the qpdf library has been enhanced to include a parser and the ability to get values
out of the JSON object. Previously it was a write-only interface. Even so, qpdf’s JSON object is not
intended to be a general-purpose JSON implementation as discussed in include/qpdf/JSON.hh.

– The JSON object’s “schema” checking functionality now allows for optional keys. Note that this
“schema” functionality doesn’t conform to any type of standard. It’s just there to help with error
reporting with qpdf’s own JSON support.

• Documentation Enhancements

– Documentation for the command-line tool has been completely rewritten. This includes a top-to-
bottom rewrite of Running qpdf in the manual. Command-line arguments are now indexed, and inter-
nal links can appear to them within the documentation.

– The output of qpdf --help is generated from the manual and is divided into help topics that parallel
the sections of the manual. When you run qpdf --help, instead of getting a Great Wall of Text,
you are given basic usage information and a list of help topics. It is possible to request help for any
individual topic or any specific command-line option, or you can get a dump of all available help text.
The manual continues to contain a greater level of detail and more examples.

• Bug Fixes

– Some characters were not correctly translated from PDF doc encoding to Unicode.

– When splitting or combining pages, ensure that all output files have a PDF version greater than or equal
to the maximum version of all the input files.

10.5.0: December 21, 2021

89

QPDF, Release 10.6.3

• Packaging changes

– Pre-built documentation is no longer distributed with the source distribution. The AppImage and
Windows binary distributions still contain embedded documentation, and a separate doc distribution
file is available from the qpdf release site. Documentation is now available at https://qpdf.readthedocs.
io for every major/minor version starting with version 10.5. Please see Packaging Documentation for
details on how packagers should handle documentation.

– The documentation sources have been switched from docbook to reStructuredText processed with
Sphinx. This will break previous documentation links. A redirect is in place on the main website. A
top-to-bottom review of the documentation is planned for an upcoming release.

• Library Enhancements

– Since qpdf version 8, using object accessor methods on an instance of QPDFObjectHandle may
create warnings if the object is not of the expected type. These warnings now have an error
code of qpdf_e_object instead of qpdf_e_damaged_pdf. Also, comments have been added to
QPDFObjectHandle.hh to explain in more detail what the behavior is. See Object Accessor Methods
for a more in-depth discussion.

– Add Pl_Buffer::getMallocBuffer() to initialize a buffer allocated with malloc() for better
cross-language interoperability.

• C API Enhancements

– Many thanks to M. Holger whose contributions have heavily influenced these C API enhancements.
His several suggestions, pull requests, questions, and critical reading of documentation and comments
have resulted in significant usability improvements to the C API.

– Overhaul error handling for the object handle functions C API. Some rare error conditions that would
previously have caused a crash are now trapped and reported, and the functions that generate them
return fallback values. See comments in the ERROR HANDLING section of include/qpdf/qpdf-c.h
for details. In particular, exceptions thrown by the underlying C++ code when calling object accessors
are caught and converted into errors. The errors can be checked by calling qpdf_has_error. Use
qpdf_silence_errors to prevent the error from being written to stderr.

– Add qpdf_get_last_string_length to the C API to get the length of the last string that was re-
turned. This is needed to handle strings that contain embedded null characters.

– Add qpdf_oh_is_initialized and qpdf_oh_new_uninitialized to the C API to make it pos-
sible to work with uninitialized objects.

– Add qpdf_oh_new_object to the C API. This allows you to clone an object handle.

– Add qpdf_get_object_by_id, qpdf_make_indirect_object, and qpdf_replace_object, ex-
posing the corresponding methods in QPDF and QPDFObjectHandle.

– Add several functions for working with pages. See PAGE FUNCTIONS in include/qpdf/qpdf-c.h
for details.

– Add several functions for working with streams. See STREAM FUNCTIONS in include/qpdf/
qpdf-c.h for details.

– Add qpdf_oh_get_type_code and qpdf_oh_get_type_name.

– Add qpdf_oh_get_binary_string_value and qpdf_oh_new_binary_string for making it eas-
ier to deal with strings that contain embedded null characters.

10.4.0: November 16, 2021

• Handling of Weak Cryptography Algorithms

90 Chapter 16. Release Notes

https://qpdf.readthedocs.io
https://qpdf.readthedocs.io
https://www.sphinx-doc.org

QPDF, Release 10.6.3

– From the qpdf CLI, the --allow-weak-crypto is now required to suppress a warning when explicitly
creating PDF files using RC4 encryption. While qpdf will always retain the ability to read and write
such files, doing so will require explicit acknowledgment moving forward. For qpdf 10.4, this change
only affects the command-line tool. Starting in qpdf 11, there will be small API changes to require
explicit acknowledgment in those cases as well. For additional information, see Weak Cryptography.

• Bug Fixes

– Fix potential bounds error when handling shell completion that could occur when given bogus input.

– Properly handle overlay/underlay on completely empty pages (with no resource dictionary).

– Fix crash that could occur under certain conditions when using --pages with files that had form fields.

• Library Enhancements

– Make QPDF::findPage functions public.

– Add methods to Pl_Flate to be able to receive warnings on certain recoverable conditions.

– Add an extra check to the library to detect when foreign objects are inserted directly (instead of using
QPDF::copyForeignObject) at the time of insertion rather than when the file is written. Catching
the error sooner makes it much easier to locate the incorrect code.

• CLI Enhancements

– Improve diagnostics around parsing --pages command-line options

• Packaging Changes

– The Windows binary distribution is now built with crypto provided by OpenSSL 3.0.

10.3.2: May 8, 2021

• Bug Fixes

– When generating a file while preserving object streams, unreferenced objects are correctly removed
unless --preserve-unreferenced is specified.

• Library Enhancements

– When adding a page that already exists, make a shallow copy instead of throwing an exception. This
makes the library behavior consistent with the CLI behavior. See ChangeLog for additional notes.

10.3.1: March 11, 2021

• Bug Fixes

– Form field copying failed on files where /DR was a direct object in the document-level form dictionary.

10.3.0: March 4, 2021

• Bug Fixes

– The code for handling form fields when copying pages from 10.2.0 was not quite right and didn’t
work in a number of situations, such as when the same page was copied multiple times or when there
were conflicting resource or field names across multiple copies. The 10.3.0 code has been much more
thoroughly tested with more complex cases and with a multitude of readers and should be much closer
to correct. The 10.2.0 code worked well enough for page splitting or for copying pages with form fields
into documents that didn’t already have them but was still not quite correct in handling of field-level
resources.

– When QPDF::replaceObject or QPDF::swapObjects is called, existing QPDFObjectHandle in-
stances no longer point to the old objects. The next time they are accessed, they automatically notice
the change to the underlying object and update themselves. This resolves a very longstanding source
of confusion, albeit in a very rarely used method call.

91

QPDF, Release 10.6.3

– Fix form field handling code to look for default appearances, quadding, and default resources in
the right places. The code was not looking for things in the document-level interactive form dic-
tionary that it was supposed to be finding there. This required adding a few new methods to
QPDFFormFieldObjectHelper.

• Library Enhancements

– Reworked the code that handles copying annotations and form fields during page operations. There
were additional methods added to the public API from 10.2.0 and a one deprecation of a method added
in 10.2.0. The majority of the API changes are in methods most people would never call and that will
hopefully be superseded by higher-level interfaces for handling page copies. Please see the ChangeLog
file for details.

– The method QPDF::numWarnings was added so that you can tell whether any warnings happened
during a specific block of code.

10.2.0: February 23, 2021

• CLI Behavior Changes

– Operations that work on combining pages are much better about protecting form fields. In particular,
--split-pages and --pages now preserve interaction form functionality by copying the relevant
form field information from the original files. Additionally, if you use --pages to select only some
pages from the original input file, unused form fields are removed, which prevents lots of unused
annotations from being retained.

– By default, qpdf no longer allows creation of encrypted PDF files whose user password is non-empty
and owner password is empty when a 256-bit key is in use. The --allow-insecure option, specified
inside the --encrypt options, allows creation of such files. Behavior changes in the CLI are avoided
when possible, but an exception was made here because this is security-related. qpdf must always
allow creation of weird files for testing purposes, but it should not default to letting users unknowingly
create insecure files.

• Library Behavior Changes

– Note: the changes in this section cause differences in output in some cases. These differences change
the syntax of the PDF but do not change the semantics (meaning). I make a strong effort to avoid
gratuitous changes in qpdf’s output so that qpdf changes don’t break people’s tests. In this case, the
changes significantly improve the readability of the generated PDF and don’t affect any output that’s
generated by simple transformation. If you are annoyed by having to update test files, please rest
assured that changes like this have been and will continue to be rare events.

– QPDFObjectHandle::newUnicodeString now uses whichever of ASCII, PDFDocEncoding, of
UTF-16 is sufficient to encode all the characters in the string. This reduces needless encoding in
UTF-16 of strings that can be encoded in ASCII. This change may cause qpdf to generate different
output than before when form field values are set using QPDFFormFieldObjectHelper but does not
change the meaning of the output.

– The code that places form XObjects and also the code that flattens rotations trim trailing zeroes from
real numbers that they calculate. This causes slight (but semantically equivalent) differences in gen-
erated appearance streams and form XObject invocations in overlay/underlay code or in user code that
calls the methods that place form XObjects on a page.

• CLI Enhancements

– Add new command line options for listing, saving, adding, removing, and and copying file attachments.
See Embedded Files/Attachments for details.

– Page splitting and merging operations, as well as --flatten-rotation, are better behaved with
respect to annotations and interactive form fields. In most cases, interactive form field functionality
and proper formatting and functionality of annotations is preserved by these operations. There are still

92 Chapter 16. Release Notes

QPDF, Release 10.6.3

some cases that aren’t perfect, such as when functionality of annotations depends on document-level
data that qpdf doesn’t yet understand or when there are problems with referential integrity among form
fields and annotations (e.g., when a single form field object or its associated annotations are shared
across multiple pages, a case that is out of spec but that works in most viewers anyway).

– The option --password-file=filename can now be used to read the decryption password from a
file. You can use - as the file name to read the password from standard input. This is an easier/more
obvious way to read passwords from files or standard input than using @file for this purpose.

– Add some information about attachments to the json output, and added attachments as an additional
json key. The information included here is limited to the preferred name and content stream and a
reference to the file spec object. This is enough detail for clients to avoid the hassle of navigating a
name tree and provides what is needed for basic enumeration and extraction of attachments. More
detailed information can be obtained by following the reference to the file spec object.

– Add numeric option to --collate. If --collate=n is given, take pages in groups of n from the
given files.

– It is now valid to provide --rotate=0 to clear rotation from a page.

• Library Enhancements

– This release includes numerous additions to the API. Not all changes are listed here. Please see the
ChangeLog file in the source distribution for a comprehensive list. Highlights appear below.

– Add QPDFObjectHandle::ditems() and QPDFObjectHandle::aitems() that enable C++-style
iteration, including range-for iteration, over dictionary and array QPDFObjectHandles. See com-
ments in include/qpdf/QPDFObjectHandle.hh and examples/pdf-name-number-tree.cc for
details.

– Add QPDFObjectHandle::copyStream for making a copy of a stream within the same QPDF in-
stance.

– Add new helper classes for supporting file attachments, also known as embedded files.
New classes are QPDFEmbeddedFileDocumentHelper, QPDFFileSpecObjectHelper, and
QPDFEFStreamObjectHelper. See their respective headers for details and examples/
pdf-attach-file.cc for an example.

– Add a version of QPDFObjectHandle::parse that takes a QPDF pointer as context so that it can parse
strings containing indirect object references. This is illustrated in examples/pdf-attach-file.cc.

– Re-implement QPDFNameTreeObjectHelper and QPDFNumberTreeObjectHelper to be more ef-
ficient, add an iterator-based API, give them the capability to repair broken trees, and create methods
for modifying the trees. With this change, qpdf has a robust read/write implementation of name and
number trees.

– Add new versions of QPDFObjectHandle::replaceStreamData that take std::function objects
for cases when you need something between a static string and a full-fledged StreamDataProvider.
Using this with QUtil::file_provider is a very easy way to create a stream from the contents of a
file.

– The QPDFMatrix class, formerly a private, internal class, has been added to the public API. See
include/qpdf/QPDFMatrix.hh for details. This class is for working with transformation matrices.
Some methods in QPDFPageObjectHelper make use of this to make information about transforma-
tion matrices available. For an example, see examples/pdf-overlay-page.cc.

– Several new methods were added to QPDFAcroFormDocumentHelper for adding, removing, getting
information about, and enumerating form fields.

– Add method QPDFAcroFormDocumentHelper::transformAnnotations, which applies a transfor-
mation to each annotation on a page.

93

QPDF, Release 10.6.3

– Add QPDFPageObjectHelper::copyAnnotations, which copies annotations and, if applicable, as-
sociated form fields, from one page to another, possibly transforming the rectangles.

• Build Changes

– A C++-14 compiler is now required to build qpdf. There is no intention to require anything newer than
that for a while. C++-14 includes modest enhancements to C++-11 and appears to be supported about
as widely as C++-11.

• Bug Fixes

– The --flatten-rotation option applies transformations to any annotations that may be on the page.

– If a form XObject lacks a resources dictionary, consider any names in that form XObject to be ref-
erenced from the containing page. This is compliant with older PDF versions. Also detect if any
form XObjects have any unresolved names and, if so, don’t remove unreferenced resources from them
or from the page that contains them. Unfortunately this has the side effect of preventing removal of
unreferenced resources in some cases where names appear that don’t refer to resources, such as with
tagged PDF. This is a bit of a corner case that is not likely to cause a significant problem in practice,
but the only side effect would be lack of removal of shared resources. A future version of qpdf may be
more sophisticated in its detection of names that refer to resources.

– Properly handle strings if they appear in inline image dictionaries while externalizing inline images.

10.1.0: January 5, 2021

• CLI Enhancements

– Add --flatten-rotation command-line option, which causes all pages that are rotated using pa-
rameters in the page’s dictionary to instead be identically rotated in the page’s contents. The change is
not user-visible for compliant PDF readers but can be used to work around broken PDF applications
that don’t properly handle page rotation.

• Library Enhancements

– Support for user-provided (pluggable, modular) stream filters. It is now possible to derive a class from
QPDFStreamFilter and register it with QPDF so that regular library methods, including those used
by QPDFWriter, can decode streams with filters not directly supported by the library. The example
examples/pdf-custom-filter.cc illustrates how to use this capability.

– Add methods to QPDFPageObjectHelper to iterate through XObjects on a page or form
XObjects, possibly recursing into nested form XObjects: forEachXObject, ForEachImage,
forEachFormXObject.

– Enhance several methods in QPDFPageObjectHelper to work with form XObjects as well as pages,
as noted in comments. See ChangeLog for a full list.

– Rename some functions in QPDFPageObjectHelper, while keeping old names for compatibility:

∗ getPageImages to getImages

∗ filterPageContents to filterContents

∗ pipePageContents to pipeContents

∗ parsePageContents to parseContents

– Add method QPDFPageObjectHelper::getFormXObjects to return a map of form XObjects di-
rectly on a page or form XObject

– Add new helper methods to QPDFObjectHandle: isFormXObject, isImage

94 Chapter 16. Release Notes

QPDF, Release 10.6.3

– Add the optional allow_streams parameter QPDFObjectHandle::makeDirect. When
QPDFObjectHandle::makeDirect is called in this way, it preserves references to streams
rather than throwing an exception.

– Add QPDFObjectHandle::setFilterOnWrite method. Calling this on a stream prevents
QPDFWriter from attempting to uncompress, recompress, or otherwise filter a stream even if it could.
Developers can use this to protect streams that are optimized should be protected from QPDFWriter’s
default behavior for any other reason.

– Add ostream << operator for QPDFObjGen. This is useful to have for debugging.

– Add method QPDFPageObjectHelper::flattenRotation, which replaces a page’s /Rotate key-
word by rotating the page within the content stream and altering the page’s bounding boxes so the
rendering is the same. This can be used to work around buggy PDF readers that can’t properly handle
page rotation.

• C API Enhancements

– Add several new functions to the C API for working with objects. These are wrappers around many of
the methods in QPDFObjectHandle. Their inclusion adds considerable new capability to the C API.

– Add qpdf_register_progress_reporter to the C API, corresponding to
QPDFWriter::registerProgressReporter.

• Performance Enhancements

– Improve steps QPDFWriter takes to prepare a QPDF object for writing, resulting in about an 8% im-
provement in write performance while allowing indirect objects to appear in /DecodeParms.

– When extracting pages, the qpdf CLI only removes unreferenced resources from the pages that are
being kept, resulting in a significant performance improvement when extracting small numbers of
pages from large, complex documents.

• Bug Fixes

– QPDFPageObjectHelper::externalizeInlineImages was not externalizing images referenced
from form XObjects that appeared on the page.

– QPDFObjectHandle::filterPageContents was broken for pages with multiple content streams.

– Tweak zsh completion code to behave a little better with respect to path completion.

10.0.4: November 21, 2020

• Bug Fixes

– Fix a handful of integer overflows. This includes cases found by fuzzing as well as having qpdf not do
range checking on unused values in the xref stream.

10.0.3: October 31, 2020

• Bug Fixes

– The fix to the bug involving copying streams with indirect filters was incorrect and introduced a new,
more serious bug. The original bug has been fixed correctly, as has the bug introduced in 10.0.2.

10.0.2: October 27, 2020

• Bug Fixes

– When concatenating content streams, as with --coalesce-contents, there were cases in which qpdf
would merge two lexical tokens together, creating invalid results. A newline is now inserted between
merged content streams if one is not already present.

95

QPDF, Release 10.6.3

– Fix an internal error that could occur when copying foreign streams whose stream data had been re-
placed using a stream data provider if those streams had indirect filters or decode parameters. This is
a rare corner case.

– Ensure that the caller’s locale settings do not change the results of numeric conversions performed in-
ternally by the qpdf library. Note that the problem here could only be caused when the qpdf library was
used programmatically. Using the qpdf CLI already ignored the user’s locale for numeric conversion.

– Fix several instances in which warnings were not suppressed in spite of --no-warn and/or errors or
warnings were written to standard output rather than standard error.

– Fixed a memory leak that could occur under specific circumstances when
--object-streams=generate was used.

– Fix various integer overflows and similar conditions found by the OSS-Fuzz project.

• Enhancements

– New option --warning-exit-0 causes qpdf to exit with a status of 0 rather than 3 if there are warn-
ings but no errors. Combine with --no-warn to completely ignore warnings.

– Performance improvements have been made to QPDF::processMemoryFile.

– The OpenSSL crypto provider produces more detailed error messages.

• Build Changes

– The option --disable-rpath is now supported by qpdf’s ./configure script. Some distributions’
packaging standards recommended the use of this option.

– Selection of a printf format string for long long has been moved from ifdefs to an autoconf test. If
you are using your own build system, you will need to provide a value for LL_FMT in libqpdf/qpdf/
qpdf-config.h, which would typically be "%lld" or, for some Windows compilers, "%I64d".

– Several improvements were made to build-time configuration of the OpenSSL crypto provider.

– A nearly stand-alone Linux binary zip file is now included with the qpdf release. This is built on
an older (but supported) Ubuntu LTS release, but would work on most reasonably recent Linux dis-
tributions. It contains only the executables and required shared libraries that would not be present
on a minimal system. It can be used for including qpdf in a minimal environment, such as a docker
container. The zip file is also known to work as a layer in AWS Lambda.

– QPDF’s automated build has been migrated from Azure Pipelines to GitHub Actions.

• Windows-specific Changes

– The Windows executables distributed with qpdf releases now use the OpenSSL crypto provider by
default. The native crypto provider is also compiled in and can be selected at runtime with the
QPDF_CRYPTO_PROVIDER environment variable.

– Improvements have been made to how a cryptographic provider is obtained in the native Windows
crypto implementation. However mostly this is shadowed by OpenSSL being used by default.

10.0.1: April 9, 2020

• Bug Fixes

– 10.0.0 introduced a bug in which calling QPDFObjectHandle::getStreamData on a stream that
can’t be filtered was returning the raw data instead of throwing an exception. This is now fixed.

– Fix a bug that was preventing qpdf from linking with some versions of clang on some platforms.

• Enhancements

96 Chapter 16. Release Notes

QPDF, Release 10.6.3

– Improve the pdf-invert-images example to avoid having to load all the images into RAM at the
same time.

10.0.0: April 6, 2020

• Performance Enhancements

– The qpdf library and executable should run much faster in this version than in the last several releases.
Several internal library optimizations have been made, and there has been improved behavior on page
splitting as well. This version of qpdf should outperform any of the 8.x or 9.x versions.

• Incompatible API (source-level) Changes (minor)

– The QUtil::srandom method was removed. It didn’t do anything unless insecure random numbers
were compiled in, and they have been off by default for a long time. If you were calling it, just remove
the call since it wasn’t doing anything anyway.

• Build/Packaging Changes

– Add a openssl crypto provider, which is implemented with OpenSSL and also works with BoringSSL.
Thanks to Dean Scarff for this contribution. If you maintain qpdf for a distribution, pay special attention
to make sure that you are including support for the crypto providers you want. Package maintainers
will have to weigh the advantages of allowing users to pick a crypto provider at runtime against the
disadvantages of adding more dependencies to qpdf.

– Allow qpdf to built on stripped down systems whose C/C++ libraries lack the wchar_t type. Search
for wchar_t in qpdf’s README.md for details. This should be very rare, but it is known to be helpful
in some embedded environments.

• CLI Enhancements

– Add objectinfo key to the JSON output. This will be a place to put computed metadata or other
information about PDF objects that are not immediately evident in other ways or that seem useful for
some other reason. In this version, information is provided about each object indicating whether it is
a stream and, if so, what its length and filters are. Without this, it was not possible to tell conclusively
from the JSON output alone whether or not an object was a stream. Run qpdf --json-help for
details.

– Add new option --remove-unreferenced-resources which takes auto, yes, or no as arguments.
The new automode, which is the default, performs a fast heuristic over a PDF file when splitting pages
to determine whether the expensive process of finding and removing unreferenced resources is likely
to be of benefit. For most files, this new default will result in a significant performance improvement
for splitting pages.

– The --preserve-unreferenced-resources is now just a synonym for
--remove-unreferenced-resources=no.

– If the QPDF_EXECUTABLE environment variable is set when invoking qpdf --bash-completion or
qpdf --zsh-completion, the completion command that it outputs will refer to qpdf using the value
of that variable rather than what qpdf determines its executable path to be. This can be useful when
wrapping qpdf with a script, working with a version in the source tree, using an AppImage, or other
situations where there is some indirection.

• Library Enhancements

– Random number generation is now delegated to the crypto provider. The old behavior is still used by
the native crypto provider. It is still possible to provide your own random number generator.

– Add a new version of QPDFObjectHandle::StreamDataProvider::provideStreamData that ac-
cepts the suppress_warnings and will_retry options and allows a success code to be returned.
This makes it possible to implement a StreamDataProvider that calls pipeStreamData on another

97

QPDF, Release 10.6.3

stream and to pass the response back to the caller, which enables better error handling on those proxied
streams.

– Update QPDFObjectHandle::pipeStreamData to return an overall success code that goes beyond
whether or not filtered data was written successfully. This allows better error handling of cases that
were not filtering errors. You have to call this explicitly. Methods in previously existing APIs have the
same semantics as before.

– The QPDFPageObjectHelper::placeFormXObject method now allows separate control over
whether it should be willing to shrink or expand objects to fit them better into the destination rect-
angle. The previous behavior was that shrinking was allowed but expansion was not. The previous
behavior is still the default.

– When calling the C API, any non-zero value passed to a boolean parameter is treated as TRUE. Previ-
ously only the value 1 was accepted. This makes the C API behave more like most C interfaces and
is known to improve compatibility with some Windows environments that dynamically load the DLL
and call functions from it.

– Add QPDFObjectHandle::unsafeShallowCopy for copying only top-level dictionary keys or array
items. This is unsafe because it creates a situation in which changing a lower-level item in one object
may also change it in another object, but for cases in which you know you are only inserting or replacing
top-level items, it is much faster than QPDFObjectHandle::shallowCopy.

– Add QPDFObjectHandle::filterAsContents, which filter’s a stream’s data as a content stream.
This is useful for parsing the contents for form XObjects in the same way as parsing page content
streams.

• Bug Fixes

– When detecting and removing unreferenced resources during page splitting, traverse into form XOb-
jects and handle their resources dictionaries as well.

– The same error recovery is applied to streams in other than the primary input file when merging or
splitting pages.

9.1.1: January 26, 2020

• Build/Packaging Changes

– The fix-qdf program was converted from perl to C++. As such, qpdf no longer has a runtime depen-
dency on perl.

• Library Enhancements

– Added new helper routine QUtil::call_main_from_wmain which converts wchar_t arguments to
UTF-8 encoded strings. This is useful for qpdf because library methods expect file names to be UTF-8
encoded, even on Windows

– Added new QUtil::read_lines_from_file methods that take FILE* arguments and that allow
preservation of end-of-line characters. This also fixes a bug where QUtil::read_lines_from_file
wouldn’t work properly with Unicode filenames.

• CLI Enhancements

– Added options --is-encrypted and --requires-password for testing whether a file is encrypted
or requires a password other than the supplied (or empty) password. These communicate via exit status,
making them useful for shell scripts. They also work on encrypted files with unknown passwords.

– Added encrypt key to JSON options. With the exception of the reconstructed user password for older
encryption formats, this provides the same information as --show-encryption but in a consistent,
parseable format. See output of qpdf --json-help for details.

• Bug Fixes

98 Chapter 16. Release Notes

QPDF, Release 10.6.3

– In QDF mode, be sure not to write more than one XRef stream to a file, even when
--preserve-unreferenced is used. fix-qdf assumes that there is only one XRef stream, and
that it appears at the end of the file.

– When externalizing inline images, properly handle images whose color space is a reference to an object
in the page’s resource dictionary.

– Windows-specific fix for acquiring crypt context with a new keyset.

9.1.0: November 17, 2019

• Build Changes

– A C++-11 compiler is now required to build qpdf.

– A new crypto provider that uses gnutls for crypto functions is now available and can be enabled at
build time. See Crypto Providers for more information about crypto providers and Build Support For
Crypto Providers for specific information about the build.

• Library Enhancements

– Incorporate contribution from Masamichi Hosoda to properly handle signature dictionaries by not
including them in object streams, formatting the Contents key has a hexadecimal string, and excluding
the /Contents key from encryption and decryption.

– Incorporate contribution from Masamichi Hosoda to provide new API calls for
getting file-level information about input and output files, enabling certain op-
erations on the files at the file level rather than the object level. New meth-
ods include QPDF::getXRefTable(), QPDFObjectHandle::getParsedOffset(),
QPDFWriter::getRenumberedObjGen(QPDFObjGen), and QPDFWriter::getWrittenXRefTable().

– Support build-time and runtime selectable crypto providers. This includes the addition of new classes
QPDFCryptoProvider and QPDFCryptoImpl and the recognition of the QPDF_CRYPTO_PROVIDER
environment variable. Crypto providers are described in depth in Crypto Providers.

• CLI Enhancements

– Addition of the --show-crypto option in support of selectable crypto providers, as described in
Crypto Providers.

– Allow :even or :odd to be appended to numeric ranges for specification of the even or odd pages
from among the pages specified in the range.

– Fix shell wildcard expansion behavior (* and ?) of the qpdf.exe as built my MSVC.

9.0.2: October 12, 2019

• Bug Fix

– Fix the name of the temporary file used by --replace-input so that it doesn’t require path splitting
and works with paths include directories.

9.0.1: September 20, 2019

• Bug Fixes/Enhancements

– Fix some build and test issues on big-endian systems and compilers with characters that are unsigned
by default. The problems were in build and test only. There were no actual bugs in the qpdf library
itself relating to endianness or unsigned characters.

– When a dictionary has a duplicated key, report this with a warning. The behavior of the library in this
case is unchanged, but the error condition is no longer silently ignored.

99

QPDF, Release 10.6.3

– When a form field’s display rectangle is erroneously specified with inverted coordinates, detect and
correct this situation. This avoids some form fields from being flipped when flattening annotations on
files with this condition.

9.0.0: August 31, 2019

• Incompatible API (source-level) Changes (minor)

– The method QUtil::strcasecmp has been renamed to QUtil::str_compare_nocase. This in-
compatible change is necessary to enable qpdf to build on platforms that define strcasecmp as a
macro.

– The QPDF::copyForeignObject method had an overloaded version that took a boolean parameter
that was not used. If you were using this version, just omit the extra parameter.

– There was a version QPDFTokenizer::expectInlineImage that took no arguments. This version
has been removed since it caused the tokenizer to return incorrect inline images. A new version was
added some time ago that produces correct output. This is a very low level method that doesn’t make
sense to call outside of qpdf’s lexical engine. There are higher level methods for tokenizing content
streams.

– Change QPDFOutlineDocumentHelper::getTopLevelOutlines and
QPDFOutlineObjectHelper::getKids to return a std::vector instead of a std::list of
QPDFOutlineObjectHelper objects.

– Remove method QPDFTokenizer::allowPoundAnywhereInName. This function would allow cre-
ation of name tokens whose value would change when unparsed, which is never the correct behavior.

• CLI Enhancements

– The --replace-input option may be given in place of an output file name. This causes qpdf to
overwrite the input file with the output. See the description of --replace-input for more details.

– The --recompress-flate instructs qpdf to recompress streams that are already compressed with
/FlateDecode. Useful with --compression-level.

– The --compression-level=level sets the zlib compression level used for any streams compressed
by /FlateDecode. Most effective when combined with --recompress-flate.

• Library Enhancements

– A new namespace QIntC, provided by qpdf/QIntC.hh, provides safe conversion methods between
different integer types. These conversion methods do range checking to ensure that the cast can be
performed with no loss of information. Every use of static_cast in the library was inspected to see
if it could use one of these safe converters instead. See Casting Policy for additional details.

– Method QPDF::anyWarnings tells whether there have been any warnings without clearing the list of
warnings.

– Method QPDF::closeInputSource closes or otherwise releases the input source. This enables the
input file to be deleted or renamed.

– New methods have been added to QUtil for converting back and forth between strings and unsigned
integers: uint_to_string, uint_to_string_base, string_to_uint, and string_to_ull.

– New methods have been added to QPDFObjectHandle that return the value of Integer objects as
int or unsigned intwith range checking and sensible fallback values, and a new method was added
to return an unsigned value. This makes it easier to write code that is safe from unintentional data loss.
Functions: getUIntValue, getIntValueAsInt, getUIntValueAsUInt.

– When parsing content streams with QPDFObjectHandle::ParserCallbacks, in place
of the method handleObject(QPDFObjectHandle), the developer may override
handleObject(QPDFObjectHandle, size_t offset, size_t length). If this method

100 Chapter 16. Release Notes

QPDF, Release 10.6.3

is defined, it will be invoked with the object along with its offset and length within the overall contents
being parsed. Intervening spaces and comments are not included in offset and length. Additionally,
a new method contentSize(size_t) may be implemented. If present, it will be called prior to the
first call to handleObject with the total size in bytes of the combined contents.

– New methods QPDF::userPasswordMatched and QPDF::ownerPasswordMatched have been
added to enable a caller to determine whether the supplied password was the user password, the
owner password, or both. This information is also displayed by qpdf --show-encryption and qpdf
--check.

– Static method Pl_Flate::setCompressionLevel can be called to set the zlib compression level
globally used by all instances of Pl_Flate in deflate mode.

– The method QPDFWriter::setRecompressFlate can be called to tell QPDFWriter to uncompress
and recompress streams already compressed with /FlateDecode.

– The underlying implementation of QPDF arrays has been enhanced to be much more memory efficient
when dealing with arrays with lots of nulls. This enables qpdf to use drastically less memory for certain
types of files.

– When traversing the pages tree, if nodes are encountered with invalid types, the types are fixed, and a
warning is issued.

– A new helper method QUtil::read_file_into_memory was added.

– All conditions previously reported by QPDF::checkLinearization() as errors are now presented
as warnings.

– Name tokens containing the # character not preceded by two hexadecimal digits, which is invalid in
PDF 1.2 and above, are properly handled by the library: a warning is generated, and the name token is
properly preserved, even if invalid, in the output. See ChangeLog for a more complete description of
this change.

• Bug Fixes

– A small handful of memory issues, assertion failures, and unhandled exceptions that could occur on
badly mangled input files have been fixed. Most of these problems were found by Google’s OSS-Fuzz
project.

– When qpdf --check or qpdf --check-linearization encounters a file with linearization warn-
ings but not errors, it now properly exits with exit code 3 instead of 2.

– The --completion-bash and --completion-zsh options now work properly when qpdf is invoked
as an AppImage.

– Calling QPDFWriter::set*EncryptionParameters on a QPDFWriter object whose output file-
name has not yet been set no longer produces a segmentation fault.

– When reading encrypted files, follow the spec more closely regarding encryption key length. This
allows qpdf to open encrypted files in most cases when they have invalid or missing /Length keys in
the encryption dictionary.

• Build Changes

– On platforms that support it, qpdf now builds with -fvisibility=hidden. If you build qpdf with
your own build system, this is now safe to use. This prevents methods that are not part of the public
API from being exported by the shared library, and makes qpdf’s ELF shared libraries (used on Linux,
MacOS, and most other UNIX flavors) behave more like the Windows DLL. Since the DLL already
behaves in much this way, it is unlikely that there are any methods that were accidentally not exported.
However, with ELF shared libraries, typeinfo for some classes has to be explicitly exported. If there
are problems in dynamically linked code catching exceptions or subclassing, this could be the reason.
If you see this, please report a bug at https://github.com/qpdf/qpdf/issues/.

101

https://github.com/qpdf/qpdf/issues/

QPDF, Release 10.6.3

– QPDF is now compiled with integer conversion and sign conversion warnings enabled. Numerous
changes were made to the library to make this safe.

– QPDF’s make install target explicitly specifies the mode to use when installing files instead of
relying the user’s umask. It was previously doing this for some files but not others.

– If pkg-config is available, use it to locate libjpeg and zlib dependencies, falling back on old
behavior if unsuccessful.

• Other Notes

– QPDF has been fully integrated into Google’s OSS-Fuzz project. This project exercises code with ran-
domly mutated inputs and is great for discovering hidden security crashes and security issues. Several
bugs found by oss-fuzz have already been fixed in qpdf.

8.4.2: May 18, 2019 This release has just one change: correction of a buffer overrun in the Windows code used to
open files. Windows users should take this update. There are no code changes that affect non-Windows releases.

8.4.1: April 27, 2019

• Enhancements

– When qpdf --version is run, it will detect if the qpdf CLI was built with a different version of qpdf
than the library, which may indicate a problem with the installation.

– New option --remove-page-labels will remove page labels before generating output. This used
to happen if you ran qpdf --empty --pages .. --, but the behavior changed in qpdf 8.3.0. This
option enables people who were relying on the old behavior to get it again.

– New option --keep-files-open-threshold=count can be used to override number of files that
qpdf will use to trigger the behavior of not keeping all files open when merging files. This may be
necessary if your system allows fewer than the default value of 200 files to be open at the same time.

• Bug Fixes

– Handle Unicode characters in filenames on Windows. The changes to support Unicode on the CLI in
Windows broke Unicode filenames for Windows.

– Slightly tighten logic that determines whether an object is a page. This should resolve problems in
some rare files where some non-page objects were passing qpdf’s test for whether something was a
page, thus causing them to be erroneously lost during page splitting operations.

– Revert change that included preservation of outlines (bookmarks) in --split-pages. The way it
was implemented in 8.3.0 and 8.4.0 caused a very significant degradation of performance for splitting
certain files. A future release of qpdf may re-introduce the behavior in a more performant and also
more correct fashion.

– In JSON mode, add missing leading 0 to decimal values between -1 and 1 even if not present in the
input. The JSON specification requires the leading 0. The PDF specification does not.

8.4.0: February 1, 2019

• Command-line Enhancements

– Non-compatible CLI change: The qpdf command-line tool interprets passwords given at the command-
line differently from previous releases when the passwords contain non-ASCII characters. In some
cases, the behavior differs from previous releases. For a discussion of the current behavior, please see
Unicode Passwords. The incompatibilities are as follows:

∗ On Windows, qpdf now receives all command-line options as Unicode strings if it can figure out
the appropriate compile/link options. This is enabled at least for MSVC and mingw builds. That
means that if non-ASCII strings are passed to the qpdf CLI in Windows, qpdf will now correctly
receive them. In the past, they would have either been encoded as Windows code page 1252 (also

102 Chapter 16. Release Notes

https://github.com/google/oss-fuzz

QPDF, Release 10.6.3

known as “Windows ANSI” or as something unintelligible. In almost all cases, qpdf is able to
properly interpret Unicode arguments now, whereas in the past, it would almost never interpret
them properly. The result is that non-ASCII passwords given to the qpdf CLI on Windows now
have a much greater chance of creating PDF files that can be opened by a variety of readers. In
the past, usually files encrypted from the Windows CLI using non-ASCII passwords would not
be readable by most viewers. Note that the current version of qpdf is able to decrypt files that it
previously created using the previously supplied password.

∗ The PDF specification requires passwords to be encoded as UTF-8 for 256-bit encryption and with
PDF Doc encoding for 40-bit or 128-bit encryption. Older versions of qpdf left it up to the user
to provide passwords with the correct encoding. The qpdf CLI now detects when a password is
given with UTF-8 encoding and automatically transcodes it to what the PDF spec requires. While
this is almost always the correct behavior, it is possible to override the behavior if there is some
reason to do so. This is discussed in more depth in Unicode Passwords.

– New options --externalize-inline-images, --ii-min-bytes, and --keep-inline-images
control qpdf’s handling of inline images and possible conversion of them to regular images. By default,
--optimize-images now also applies to inline images.

– Add options --overlay and --underlay for overlaying or underlaying pages of other files onto
output pages. See Overlay and Underlay for details.

– When opening an encrypted file with a password, if the specified password doesn’t work and the
password contains any non-ASCII characters, qpdf will try a number of alternative passwords to
try to compensate for possible character encoding errors. This behavior can be suppressed with the
--suppress-password-recovery option. See Unicode Passwords for a full discussion.

– Add the --password-mode option to fine-tune how qpdf interprets password arguments, especially
when they contain non-ASCII characters. See Unicode Passwords for more information.

– In the --pages option, it is now possible to copy the same page more than once from the same file
without using the previous workaround of specifying two different paths to the same file.

– In the --pages option, allow use of “.” as a shortcut for the primary input file. That way, you can do
qpdf in.pdf --pages . 1-2 -- out.pdf instead of having to repeat in.pdf in the command.

– When encrypting with 128-bit and 256-bit encryption, new encryption options --assemble,
--annotate, --form , and --modify-other allow more fine-grained granularity in configuring op-
tions. Before, the --modify option only configured certain predefined groups of permissions.

• Bug Fixes and Enhancements

– Potential data-loss bug: Versions of qpdf between 8.1.0 and 8.3.0 had a bug that could cause page
splitting and merging operations to drop some font or image resources if the PDF file’s internal structure
shared these resource lists across pages and if some but not all of the pages in the output did not
reference all the fonts and images. Using the --preserve-unreferenced-resources option would
work around the incorrect behavior. This bug was the result of a typo in the code and a deficiency in
the test suite. The case that triggered the error was known, just not handled properly. This case is now
exercised in qpdf’s test suite and properly handled.

– When optimizing images, detect and refuse to optimize images that can’t be converted to JPEG because
of bit depth or color space.

– Linearization and page manipulation APIs now detect and recover from files that have duplicate Page
objects in the pages tree.

– Using older option --stream-data=compress with object streams, object streams and xref streams
were not compressed.

– When the tokenizer returns inline image tokens, delimiters following ID and EI operators are no longer
excluded. This makes it possible to reliably extract the actual image data.

103

QPDF, Release 10.6.3

• Library Enhancements

– Add method QPDFPageObjectHelper::externalizeInlineImages to convert inline images to
regular images.

– Add method QUtil::possible_repaired_encodings() to generate a list of strings that represent
other ways the given string could have been encoded. This is the method the QPDF CLI uses to generate
the strings it tries when recovering incorrectly encoded Unicode passwords.

– Add new versions of QPDFWriter::setR{3,4,5,6}EncryptionParameters that allow more gran-
ular setting of permissions bits. See QPDFWriter.hh for details.

– Add new versions of the transcoders from UTF-8 to single-byte coding systems in QUtil that report
success or failure rather than just substituting a specified unknown character.

– Add method QUtil::analyze_encoding() to determine whether a string has high-bit characters
and is appears to be UTF-16 or valid UTF-8 encoding.

– Add new method QPDFPageObjectHelper::shallowCopyPage() to copy a new page that is
a “shallow copy” of a page. The resulting object is an indirect object ready to be passed to
QPDFPageDocumentHelper::addPage() for either the original QPDF object or a different one. This
is what the qpdf command-line tool uses to copy the same page multiple times from the same file
during splitting and merging operations.

– Add method QPDF::getUniqueId(), which returns a unique identifier for the given QPDF object.
The identifier will be unique across the life of the application. The returned value can be safely used
as a map key.

– Add method QPDF::setImmediateCopyFrom. This further enhances qpdf’s ability to allow a QPDF
object from which objects are being copied to go out of scope before the destination object is written. If
you call this method on a QPDF instances, objects copied from this instance will be copied immediately
instead of lazily. This option uses more memory but allows the source object to go out of scope before
the destination object is written in all cases. See comments in QPDF.hh for details.

– Add method QPDFPageObjectHelper::getAttribute for retrieving an attribute from the page dic-
tionary taking inheritance into consideration, and optionally making a copy if your intention is to
modify the attribute.

– Fix long-standing limitation of QPDFPageObjectHelper::getPageImages so that it now
properly reports images from inherited resources dictionaries, eliminating the need to call
QPDFPageDocumentHelper::pushInheritedAttributesToPage in this case.

– Add method QPDFObjectHandle::getUniqueResourceName for finding an unused name in a re-
source dictionary.

– Add method QPDFPageObjectHelper::getFormXObjectForPage for generating a form XObject
equivalent to a page. The resulting object can be used in the same file or copied to another file with
copyForeignObject. This can be useful for implementing underlay, overlay, n-up, thumbnails, or
any other functionality requiring replication of pages in other contexts.

– Add method QPDFPageObjectHelper::placeFormXObject for generating content stream text that
places a given form XObject on a page, centered and fit within a specified rectangle. This method
takes care of computing the proper transformation matrix and may optionally compensate for rotation
or scaling of the destination page.

• Build Improvements

– Add new configure option --enable-avoid-windows-handle, which causes the preprocessor sym-
bol AVOID_WINDOWS_HANDLE to be defined. When defined, qpdf will avoid referencing the Windows
HANDLE type, which is disallowed with certain versions of the Windows SDK.

104 Chapter 16. Release Notes

QPDF, Release 10.6.3

– For Windows builds, attempt to determine what options, if any, have to be passed to the compiler and
linker to enable use of wmain. This causes the preprocessor symbol WINDOWS_WMAIN to be defined. If
you do your own builds with other compilers, you can define this symbol to cause wmain to be used.
This is needed to allow the Windows qpdf command to receive Unicode command-line options.

8.3.0: January 7, 2019

• Command-line Enhancements

– Shell completion: you can now use eval $(qpdf --completion-bash) and eval $(qpdf
--completion-zsh) to enable shell completion for bash and zsh.

– Page numbers (also known as page labels) are now preserved when merging and splitting files with the
--pages and --split-pages options.

– Bookmarks are partially preserved when splitting pages with the --split-pages option. Specifically,
the outlines dictionary and some supporting metadata are copied into the split files. The result is that
all bookmarks from the original file appear, those that point to pages that are preserved work, and
those that point to pages that are not preserved don’t do anything. This is an interim step toward proper
support for bookmarks in splitting and merging operations.

– Page collation: add new option --collate. When specified, the semantics of --pages change from
concatenation to collation. See Page Selection for examples and discussion.

– Generation of information in JSON format, primarily to facilitate use of qpdf from languages other
than C++. Add new options --json, --json-key, and --json-object to generate a JSON repre-
sentation of the PDF file. Run qpdf --json-help to get a description of the JSON format. For more
information, see QPDF JSON .

– The --generate-appearances flag will cause qpdf to generate appearances for form fields if the
PDF file indicates that form field appearances are out of date. This can happen when PDF forms are
filled in by a program that doesn’t know how to regenerate the appearances of the filled-in fields.

– The --flatten-annotations flag can be used to flatten annotations, including form fields. Or-
dinarily, annotations are drawn separately from the page. Flattening annotations is the process of
combining their appearances into the page’s contents. You might want to do this if you are going to
rotate or combine pages using a tool that doesn’t understand about annotations. You may also want to
use --generate-appearances when using this flag since annotations for outdated form fields are
not flattened as that would cause loss of information.

– The --optimize-images flag tells qpdf to recompresses every image using DCT (JPEG) com-
pression as long as the image is not already compressed with lossy compression and recompress-
ing the image reduces its size. The additional options --oi-min-width , --oi-min-height, and
--oi-min-area prevent recompression of images whose width, height, or pixel area (width × height)
are below a specified threshold.

– The --show-object option can now be given as --show-object=trailer to show the trailer dic-
tionary.

• Bug Fixes and Enhancements

– QPDF now automatically detects and recovers from dangling references. If a PDF file contained an
indirect reference to a non-existent object, which is valid, when adding a new object to the file, it was
possible for the new object to take the object ID of the dangling reference, thereby causing the dangling
reference to point to the new object. This case is now prevented.

– Fixes to form field setting code: strings are always written in UTF-16 format, and checkboxes and
radio buttons are handled properly with respect to synchronization of values and appearance states.

– The QPDF::checkLinearization() no longer causes the program to crash when it detects problems
with linearization data. Instead, it issues a normal warning or error.

105

QPDF, Release 10.6.3

– Ordinarily qpdf treats an argument of the form @file to mean that command-line options should be
read from file. Now, if file does not exist but @file does, qpdf will treat @file as a regular
option. This makes it possible to work more easily with PDF files whose names happen to start with
the @ character.

• Library Enhancements

– Remove the restriction in most cases that the source QPDF object used in a
QPDF::copyForeignObject call has to stick around until the destination QPDF is written. The ex-
ceptional case is when the source stream gets is data using a QPDFObjectHandle::StreamDataProvider.
For a more in-depth discussion, see comments around copyForeignObject in QPDF.hh.

– Add new method QPDFWriter::getFinalVersion(), which returns the PDF version that will ul-
timately be written to the final file. See comments in QPDFWriter.hh for some restrictions on its
use.

– Add several methods for transcoding strings to some of the character sets used in PDF
files: QUtil::utf8_to_ascii, QUtil::utf8_to_win_ansi, QUtil::utf8_to_mac_roman, and
QUtil::utf8_to_utf16. For the single-byte encodings that support only a limited character sets,
these methods replace unsupported characters with a specified substitute.

– Add new methods to QPDFAnnotationObjectHelper and QPDFFormFieldObjectHelper for
querying flags and interpretation of different field types. Define constants in qpdf/Constants.h
to help with interpretation of flag values.

– Add new methods QPDFAcroFormDocumentHelper::generateAppearancesIfNeeded and
QPDFFormFieldObjectHelper::generateAppearance for generating appearance streams. See
discussion in QPDFFormFieldObjectHelper.hh for limitations.

– Add two new helper functions for dealing with resource dictionaries:
QPDFObjectHandle::getResourceNames() returns a list of all second-level keys, which
correspond to the names of resources, and QPDFObjectHandle::mergeResources() merges two
resources dictionaries as long as they have non-conflicting keys. These methods are useful for certain
types of objects that resolve resources from multiple places, such as form fields.

– Add methods QPDFPageDocumentHelper::flattenAnnotations() and
QPDFAnnotationObjectHelper::getPageContentForAppearance() for handling low-level
details of annotation flattening.

– Add new helper classes: QPDFOutlineDocumentHelper, QPDFOutlineObjectHelper,
QPDFPageLabelDocumentHelper, QPDFNameTreeObjectHelper, and
QPDFNumberTreeObjectHelper.

– Add method QPDFObjectHandle::getJSON() that returns a JSON representation of the object. Call
serialize() on the result to convert it to a string.

– Add a simple JSON serializer. This is not a complete or general-purpose JSON library. It allows
assembly and serialization of JSON structures with some restrictions, which are described in the header
file. This is the serializer used by qpdf’s new JSON representation.

– Add new QPDFObjectHandle::Matrix class along with a few convenience methods for dealing with
six-element numerical arrays as matrices.

– Add new method QPDFObjectHandle::wrapInArray, which returns the object itself if it is an array,
or an array containing the object otherwise. This is a common construct in PDF. This method prevents
you from having to explicitly test whether something is a single element or an array.

• Build Improvements

– It is no longer necessary to run autogen.sh to build from a pristine checkout. Automatically generated
files are now committed so that it is possible to build on platforms without autoconf directly from a

106 Chapter 16. Release Notes

QPDF, Release 10.6.3

clean checkout of the repository. The configure script detects if the files are out of date when it also
determines that the tools are present to regenerate them.

– Pull requests and the master branch are now built automatically in Azure Pipelines, which is free for
open source projects. The build includes Linux, mac, Windows 32-bit and 64-bit with mingw and
MSVC, and an AppImage build. Official qpdf releases are now built with Azure Pipelines.

• Notes for Packagers

– A new section has been added to the documentation with notes for packagers. Please see Notes for
Packagers.

– The qpdf detects out-of-date automatically generated files. If your packaging system automatically
refreshes libtool or autoconf files, it could cause this check to fail. To avoid this problem, pass
--disable-check-autofiles to configure.

– If you would like to have qpdf completion enabled automatically, you can install completion files in
the distribution’s default location. You can find sample completion files to install in the completions
directory.

8.2.1: August 18, 2018

• Command-line Enhancements

– Add --keep-files-open=[yn] to override default determination of whether to keep files open when
merging. Please see the discussion of --keep-files-open for additional details.

8.2.0: August 16, 2018

• Command-line Enhancements

– Add --no-warn option to suppress issuing warning messages. If there are any conditions that would
have caused warnings to be issued, the exit status is still 3.

• Bug Fixes and Optimizations

– Performance fix: optimize page merging operation to avoid unnecessary open/close calls on files being
merged. This solves a dramatic slow-down that was observed when merging certain types of files.

– Optimize how memory was used for the TIFF predictor, drastically improving performance and mem-
ory usage for files containing high-resolution images compressed with Flate using the TIFF predictor.

– Bug fix: end of line characters were not properly handled inside strings in some cases.

– Bug fix: using --progress on very small files could cause an infinite loop.

• API enhancements

– Add new class QPDFSystemError, derived from std::runtime_error, which is now thrown by
QUtil::throw_system_error. This enables the triggering errno value to be retrieved.

– Add ClosedFileInputSource::stayOpen method, enabling a ClosedFileInputSource to stay
open during manually indicated periods of high activity, thus reducing the overhead of frequent
open/close operations.

• Build Changes

– For the mingw builds, change the name of the DLL import library from libqpdf.a to libqpdf.
dll.a to more accurately reflect that it is an import library rather than a static library. This potentially
clears the way for supporting a static library in the future, though presently, the qpdf Windows build
only builds the DLL and executables.

8.1.0: June 23, 2018

• Usability Improvements

107

https://dev.azure.com/qpdf/qpdf/_build

QPDF, Release 10.6.3

– When splitting files, qpdf detects fonts and images that the document metadata claims are referenced
from a page but are not actually referenced and omits them from the output file. This change can cause
a significant reduction in the size of split PDF files for files created by some software packages. In
some cases, it can also make page splitting slower. Prior versions of qpdf would believe the document
metadata and sometimes include all the images from all the other pages even though the pages were
no longer present. In the unlikely event that the old behavior should be desired, or if you have a
case where page splitting is very slow, the old behavior (and speed) can be enabled by specifying
--preserve-unreferenced-resources.

– When merging multiple PDF files, qpdf no longer leaves all the files open. This makes it possible to
merge numbers of files that may exceed the operating system’s limit for the maximum number of open
files.

– The --rotate option’s syntax has been extended to make the page range optional. If you specify
--rotate=angle without specifying a page range, the rotation will be applied to all pages. This can
be especially useful for adjusting a PDF created from a multi-page document that was scanned upside
down.

– When merging multiple files, the --verbose option now prints information about each file as it oper-
ates on that file.

– When the --progress option is specified, qpdf will print a running indicator of its best guess at how
far through the writing process it is. Note that, as with all progress meters, it’s an approximation. This
option is implemented in a way that makes it useful for software that uses the qpdf library; see API
Enhancements below.

• Bug Fixes

– Properly decrypt files that use revision 3 of the standard security handler but use 40 bit keys (even
though revision 3 supports 128-bit keys).

– Limit depth of nested data structures to prevent crashes from certain types of malformed (malicious)
PDFs.

– In “newline before endstream” mode, insert the required extra newline before the endstream at the
end of object streams. This one case was previously omitted.

• API Enhancements

– The first round of higher level “helper” interfaces has been introduced. These are designed to provide
a more convenient way of interacting with certain document features than using QPDFObjectHandle
directly. For details on helpers, see Helper Classes. Specific additional interfaces are described below.

– Add two new document helper classes: QPDFPageDocumentHelper for working with pages, and
QPDFAcroFormDocumentHelper for working with interactive forms. No old methods have been re-
moved, but QPDFPageDocumentHelper is now the preferred way to perform operations on pages
rather than calling the old methods in QPDFObjectHandle and QPDF directly. Comments in the header
files direct you to the new interfaces. Please see the header files and ChangeLog for additional details.

– Add three new object helper class: QPDFPageObjectHelper for pages,
QPDFFormFieldObjectHelper for interactive form fields, and QPDFAnnotationObjectHelper
for annotations. All three classes are fairly sparse at the moment, but they have some useful, basic
functionality.

– A new example program examples/pdf-set-form-values.cc has been added that illustrates use
of the new document and object helpers.

– The method QPDFWriter::registerProgressReporter has been added. This method allows you
to register a function that is called by QPDFWriter to update your idea of the percentage it thinks it
is through writing its output. Client programs can use this to implement reasonably accurate progress
meters. The qpdf command line tool uses this to implement its --progress option.

108 Chapter 16. Release Notes

QPDF, Release 10.6.3

– New methods QPDFObjectHandle::newUnicodeString and QPDFObject::unparseBinary have
been added to allow for more convenient creation of strings that are explicitly encoded using big-endian
UTF-16. This is useful for creating strings that appear outside of content streams, such as labels, form
fields, outlines, document metadata, etc.

– A new class QPDFObjectHandle::Rectangle has been added to ease working with PDF rectangles,
which are just arrays of four numeric values.

8.0.2: March 6, 2018

• When a loop is detected while following cross reference streams or tables, treat this as damage instead of
silently ignoring the previous table. This prevents loss of otherwise recoverable data in some damaged files.

• Properly handle pages with no contents.

8.0.1: March 4, 2018

• Disregard data check errors when uncompressing /FlateDecode streams. This is consistent with most
other PDF readers and allows qpdf to recover data from another class of malformed PDF files.

• On the command line when specifying page ranges, support preceding a page number by “r” to indicate
that it should be counted from the end. For example, the range r3-r1 would indicate the last three pages
of a document.

8.0.0: February 25, 2018

• Packaging and Distribution Changes

– QPDF is now distributed as an AppImage in addition to all the other ways it is distributed. The Ap-
pImage can be found in the download area with the other packages. Thanks to Kurt Pfeifle and Simon
Peter for their contributions.

• Bug Fixes

– QPDFObjectHandle::getUTF8Val now properly treats non-Unicode strings as encoded with PDF
Doc Encoding.

– Improvements to handling of objects in PDF files that are not of the expected type. In most cases, qpdf
will be able to warn for such cases rather than fail with an exception. Previous versions of qpdf would
sometimes fail with errors such as “operation for dictionary object attempted on object of wrong type”.
This situation should be mostly or entirely eliminated now.

• Enhancements to the qpdf Command-line Tool. All new options listed here are documented in more detail
in Running qpdf .

– The option --linearize-pass1=file has been added for debugging qpdf’s linearization code.

– The option --coalesce-contents can be used to combine content streams of a page whose contents
are an array of streams into a single stream.

• API Enhancements. All new API calls are documented in their respective classes’ header files. There are
no non-compatible changes to the API.

– Add function qpdf_check_pdf to the C API. This function does basic checking that is a subset of
what qpdf --check performs.

– Major enhancements to the lexical layer of qpdf. For a complete list of enhancements, please refer to
the ChangeLog file. Most of the changes result in improvements to qpdf’s ability handle erroneous
files. It is also possible for programs to handle whitespace, comments, and inline images as tokens.

– New API for working with PDF content streams at a lexical level. The new class
QPDFObjectHandle::TokenFilter allows the developer to provide token handlers. Token fil-
ters can be used with several different methods in QPDFObjectHandle as well as with a lower-

109

https://appimage.org/

QPDF, Release 10.6.3

level interface. See comments in QPDFObjectHandle.hh as well as the new examples examples/
pdf-filter-tokens.cc and examples/pdf-count-strings.cc for details.

7.1.1: February 4, 2018

• Bug fix: files whose /ID fields were other than 16 bytes long can now be properly linearized

• A few compile and link issues have been corrected for some platforms.

7.1.0: January 14, 2018

• PDF files contain streams that may be compressed with various compression algorithms which, in some
cases, may be enhanced by various predictor functions. Previously only the PNG up predictor was sup-
ported. In this version, all the PNG predictors as well as the TIFF predictor are supported. This increases
the range of files that qpdf is able to handle.

• QPDF now allows a raw encryption key to be specified in place of a password when opening encrypted files,
and will optionally display the encryption key used by a file. This is a non-standard operation, but it can
be useful in certain situations. Please see the discussion of --password-is-hex-key or the comments
around QPDF::setPasswordIsHexKey in QPDF.hh for additional details.

• Bug fix: numbers ending with a trailing decimal point are now properly recognized as numbers.

• Bug fix: when building qpdf from source on some platforms (especially MacOS), the build could get
confused by older versions of qpdf installed on the system. This has been corrected.

7.0.0: September 15, 2017

• Packaging and Distribution Changes

– QPDF’s primary license is now version 2.0 of the Apache License rather than version 2.0 of the Artistic
License. You may still, at your option, consider qpdf to be licensed with version 2.0 of the Artistic
license.

– QPDF no longer has a dependency on the PCRE (Perl-Compatible Regular Expression) library. QPDF
now has an added dependency on the JPEG library.

• Bug Fixes

– This release contains many bug fixes for various infinite loops, memory leaks, and other memory errors
that could be encountered with specially crafted or otherwise erroneous PDF files.

• New Features

– QPDF now supports reading and writing streams encoded with JPEG or RunLength encod-
ing. Library API enhancements and command-line options have been added to control this be-
havior. See command-line options --compress-streams and --decode-level and methods
QPDFWriter::setCompressStreams and QPDFWriter::setDecodeLevel.

– QPDF is much better at recovering from broken files. In most cases, qpdf will skip invalid objects
and will preserve broken stream data by not attempting to filter broken streams. QPDF is now able to
recover or at least not crash on dozens of broken test files I have received over the past few years.

– Page rotation is now supported and accessible from both the library and the command line.

– QPDFWriter supports writing files in a way that preserves PCLm compliance in support of driverless
printing. This is very specialized and is only useful to applications that already know how to create
PCLm files.

• Enhancements to the qpdf Command-line Tool. All new options listed here are documented in more detail
in Running qpdf .

– Command-line arguments can now be read from files or standard input using @file or @- syntax.
Please see Basic Invocation.

110 Chapter 16. Release Notes

http://www.apache.org/licenses/LICENSE-2.0

QPDF, Release 10.6.3

– --rotate: request page rotation

– --newline-before-endstream : ensure that a newline appears before every endstream keyword
in the file; used to prevent qpdf from breaking PDF/A compliance on already compliant files.

– --preserve-unreferenced : preserve unreferenced objects in the input PDF

– --split-pages: break output into chunks with fixed numbers of pages

– --verbose: print the name of each output file that is created

– --compress-streams and --decode-level replace --stream-data for improving granularity of
controlling compression and decompression of stream data. The --stream-data option will remain
available.

– When running qpdf --check with other options, checks are always run first. This enables qpdf to
perform its full recovery logic before outputting other information. This can be especially useful when
manually recovering broken files, looking at qpdf’s regenerated cross reference table, or other similar
operations.

– Process --pages earlier so that other options like --show-pages or --split-pages can operate on
the file after page splitting/merging has occurred.

• API Changes. All new API calls are documented in their respective classes’ header files.

– QPDFObjectHandle::rotatePage: apply rotation to a page object

– QPDFWriter::setNewlineBeforeEndstream: force newline to appear before endstream

– QPDFWriter::setPreserveUnreferencedObjects: preserve unreferenced objects that appear in
the input PDF. The default behavior is to discard them.

– New Pipeline types Pl_RunLength and Pl_DCT are available for developers who wish to produce
or consume RunLength or DCT stream data directly. The examples/pdf-create.cc example illus-
trates their use.

– QPDFWriter::setCompressStreams and QPDFWriter::setDecodeLevel methods control han-
dling of different types of stream compression.

– Add new C API functions qpdf_set_compress_streams, qpdf_set_decode_level,
qpdf_set_preserve_unreferenced_objects, and qpdf_set_newline_before_endstream
corresponding to the new QPDFWriter methods.

6.0.0: November 10, 2015

• Implement --deterministic-id command-line option and QPDFWriter::setDeterministicID as
well as C API function qpdf_set_deterministic_ID for generating a deterministic ID for non-encrypted
files. When this option is selected, the ID of the file depends on the contents of the output file, and not on
transient items such as the timestamp or output file name.

• Make qpdf more tolerant of files whose xref table entries are not the correct length.

5.1.3: May 24, 2015

• Bug fix: fix-qdf was not properly handling files that contained object streams with more than 255 objects
in them.

• Bug fix: qpdf was not properly initializing Microsoft’s secure crypto provider on fresh Windows installa-
tions that had not had any keys created yet.

• Fix a few errors found by Gynvael Coldwind and Mateusz Jurczyk of the Google Security Team. Please
see the ChangeLog for details.

• Properly handle pages that have no contents at all. There were many cases in which qpdf handled this fine,
but a few methods blindly obtained page contents with handling the possibility that there were no contents.

111

QPDF, Release 10.6.3

• Make qpdf more robust for a few more kinds of problems that may occur in invalid PDF files.

5.1.2: June 7, 2014

• Bug fix: linearizing files could create a corrupted output file under extremely unlikely file size circum-
stances. See ChangeLog for details. The odds of getting hit by this are very low, though one person did.

• Bug fix: qpdf would fail to write files that had streams with decode parameters referencing other streams.

• New example program: pdf-split-pages: efficiently split PDF files into individual pages. The example
program does this more efficiently than using qpdf --pages to do it.

• Packaging fix: Visual C++ binaries did not support Windows XP. This has been rectified by updating the
compilers used to generate the release binaries.

5.1.1: January 14, 2014

• Performance fix: copying foreign objects could be very slow with certain types of files. This was most
likely to be visible during page splitting and was due to traversing the same objects multiple times in some
cases.

5.1.0: December 17, 2013

• Added runtime option (QUtil::setRandomDataProvider) to supply your own random data provider.
You can use this if you want to avoid using the OS-provided secure random number generation facility or
stdlib’s less secure version. See comments in include/qpdf/QUtil.hh for details.

• Fixed image comparison tests to not create 12-bit-per-pixel images since some versions of tiffcmp have
bugs in comparing them in some cases. This increases the disk space required by the image comparison
tests, which are off by default anyway.

• Introduce a number of small fixes for compilation on the latest clang in MacOS and the latest Visual C++
in Windows.

• Be able to handle broken files that end the xref table header with a space instead of a newline.

5.0.1: October 18, 2013

• Thanks to a detailed review by Florian Weimer and the Red Hat Product Security Team, this release includes
a number of non-user-visible security hardening changes. Please see the ChangeLog file in the source
distribution for the complete list.

• When available, operating system-specific secure random number generation is used for generating initial-
ization vectors and other random values used during encryption or file creation. For the Windows build, this
results in an added dependency on Microsoft’s cryptography API. To disable the OS-specific cryptography
and use the old version, pass the --enable-insecure-random option to ./configure.

• The qpdf command-line tool now issues a warning when -accessibility=n is specified for newer en-
cryption versions stating that the option is ignored. qpdf, per the spec, has always ignored this flag, but it
previously did so silently. This warning is issued only by the command-line tool, not by the library. The
library’s handling of this flag is unchanged.

5.0.0: July 10, 2013

• Bug fix: previous versions of qpdf would lose objects with generation != 0 when generating object streams.
Fixing this required changes to the public API.

• Removed methods from public API that were only supposed to be called by QPDFWriter and couldn’t
realistically be called anywhere else. See ChangeLog for details.

• New QPDFObjGen class added to represent an object ID/generation pair.
QPDFObjectHandle::getObjGen() is now preferred over QPDFObjectHandle::getObjectID() and
QPDFObjectHandle::getGeneration() as it makes it less likely for people to accidentally write code
that ignores the generation number. See QPDF.hh and QPDFObjectHandle.hh for additional notes.

112 Chapter 16. Release Notes

QPDF, Release 10.6.3

• Add --show-npages command-line option to the qpdf command to show the number of pages in a file.

• Allow omission of the page range within --pages for the qpdf command. When omitted, the page range
is implicitly taken to be all the pages in the file.

• Various enhancements were made to support different types of broken files or broken readers. Details can
be found in ChangeLog.

4.1.0: April 14, 2013

• Note to people including qpdf in distributions: the .la files generated by libtool are now installed by qpdf’s
make install target. Before, they were not installed. This means that if your distribution does not want
to include .la files, you must remove them as part of your packaging process.

• Major enhancement: API enhancements have been made to support parsing of content streams. This en-
hancement includes the following changes:

– QPDFObjectHandle::parseContentStream method parses objects in a content stream and calls
handlers in a callback class. The example examples/pdf-parse-content.cc illustrates how this
may be used.

– QPDFObjectHandle can now represent operators and inline images, object types that may only appear
in content streams.

– Method QPDFObjectHandle::getTypeCode() returns an enumerated type value representing the
underlying object type. Method QPDFObjectHandle::getTypeName() returns a text string describ-
ing the name of the type of a QPDFObjectHandle object. These methods can be used for more efficient
parsing and debugging/diagnostic messages.

• qpdf --check now parses all pages’ content streams in addition to doing other checks. While there are
still many types of errors that cannot be detected, syntactic errors in content streams will now be reported.

• Minor compilation enhancements have been made to facilitate easier for support for a broader range of
compilers and compiler versions.

– Warning flags have been moved into a separate variable in autoconf.mk

– The configure flag --enable-werror work for Microsoft compilers

– All MSVC CRT security warnings have been resolved.

– All C-style casts in C++ Code have been replaced by C++ casts, and many casts that had been included
to suppress higher warning levels for some compilers have been removed, primarily for clarity. Places
where integer type coercion occurs have been scrutinized. A new casting policy has been documented
in the manual. This is of concern mainly to people porting qpdf to new platforms or compilers. It is
not visible to programmers writing code that uses the library

– Some internal limits have been removed in code that converts numbers to strings. This is largely
invisible to users, but it does trigger a bug in some older versions of mingw-w64’s C++ library. See
README-windows.md in the source distribution if you think this may affect you. The copy of the DLL
distributed with qpdf’s binary distribution is not affected by this problem.

• The RPM spec file previously included with qpdf has been removed. This is because virtually all Linux
distributions include qpdf now that it is a dependency of CUPS filters.

• A few bug fixes are included:

– Overridden compressed objects are properly handled. Before, there were certain constructs that could
cause qpdf to see old versions of some objects. The most usual manifestation of this was loss of filled
in form values for certain files.

– Installation no longer uses GNU/Linux-specific versions of some commands, so make installworks
on Solaris with native tools.

113

QPDF, Release 10.6.3

– The 64-bit mingw Windows binary package no longer includes a 32-bit DLL.

4.0.1: January 17, 2013

• Fix detection of binary attachments in test suite to avoid false test failures on some platforms.

• Add clarifying comment in QPDF.hh to methods that return the user password explaining that it is no longer
possible with newer encryption formats to recover the user password knowing the owner password. In
earlier encryption formats, the user password was encrypted in the file using the owner password. In newer
encryption formats, a separate encryption key is used on the file, and that key is independently encrypted
using both the user password and the owner password.

4.0.0: December 31, 2012

• Major enhancement: support has been added for newer encryption schemes supported by version X
of Adobe Acrobat. This includes use of 127-character passwords, 256-bit encryption keys, and the
encryption scheme specified in ISO 32000-2, the PDF 2.0 specification. This scheme can be cho-
sen from the command line by specifying use of 256-bit keys. qpdf also supports the deprecated en-
cryption method used by Acrobat IX. This encryption style has known security weaknesses and should
not be used in practice. However, such files exist “in the wild,” so support for this scheme is still
useful. New methods QPDFWriter::setR6EncryptionParameters (for the PDF 2.0 scheme) and
QPDFWriter::setR5EncryptionParameters (for the deprecated scheme) have been added to enable
these new encryption schemes. Corresponding functions have been added to the C API as well.

• Full support for Adobe extension levels in PDF version information. Starting with PDF version 1.7, cor-
responding to ISO 32000, Adobe adds new functionality by increasing the extension level rather than in-
creasing the version. This support includes addition of the QPDF::getExtensionLevel method for re-
trieving the document’s extension level, addition of versions of QPDFWriter::setMinimumPDFVersion
and QPDFWriter::forcePDFVersion that accept an extension level, and extended syntax for spec-
ifying forced and minimum versions on the command line as described in --force-version and
--min-version. Corresponding functions have been added to the C API as well.

• Minor fixes to prevent qpdf from referencing objects in the file that are not referenced in the file’s overall
structure. Most files don’t have any such objects, but some files have contain unreferenced objects with
errors, so these fixes prevent qpdf from needlessly rejecting or complaining about such objects.

• Add new generalized methods for reading and writing files from/to programmer-defined sources. The
method QPDF::processInputSource allows the programmer to use any input source for the input file, and
QPDFWriter::setOutputPipeline allows the programmer to write the output file through any pipeline.
These methods would make it possible to perform any number of specialized operations, such as accessing
external storage systems, creating bindings for qpdf in other programming languages that have their own
I/O systems, etc.

• Add new method QPDF::getEncryptionKey for retrieving the underlying encryption key used in the file.

• This release includes a small handful of non-compatible API changes. While effort is made to avoid such
changes, all the non-compatible API changes in this version were to parts of the API that would likely never
be used outside the library itself. In all cases, the altered methods or structures were parts of the QPDF that
were public to enable them to be called from either QPDFWriter or were part of validation code that was
over-zealous in reporting problems in parts of the file that would not ordinarily be referenced. In no case did
any of the removed methods do anything worse that falsely report error conditions in files that were broken
in ways that didn’t matter. The following public parts of the QPDF class were changed in a non-compatible
way:

– Updated nested QPDF::EncryptionData class to add fields needed by the newer encryption formats,
member variables changed to private so that future changes will not require breaking backward com-
patibility.

– Added additional parameters to compute_data_key, which is used by QPDFWriter to compute the
encryption key used to encrypt a specific object.

114 Chapter 16. Release Notes

QPDF, Release 10.6.3

– Removed the method flattenScalarReferences. This method was previously used prior to writing
a new PDF file, but it has the undesired side effect of causing qpdf to read objects in the file that were
not referenced. Some otherwise files have unreferenced objects with errors in them, so this could cause
qpdf to reject files that would be accepted by virtually all other PDF readers. In fact, qpdf relied on
only a very small part of what flattenScalarReferences did, so only this part has been preserved, and it
is now done directly inside QPDFWriter.

– Removed the method decodeStreams. This method was used by the --check option of the qpdf
command-line tool to force all streams in the file to be decoded, but it also suffered from the problem
of opening otherwise unreferenced streams and thus could report false positive. The --check option
now causes qpdf to go through all the motions of writing a new file based on the original one, so it
will always reference and check exactly those parts of a file that any ordinary viewer would check.

– Removed the method trimTrailerForWrite. This method was used by QPDFWriter to modify the
original QPDF object by removing fields from the trailer dictionary that wouldn’t apply to the newly
written file. This functionality, though generally harmless, was a poor implementation and has been
replaced by having QPDFWriter filter these out when copying the trailer rather than modifying the
original QPDF object. (Note that qpdf never modifies the original file itself.)

• Allow the PDF header to appear anywhere in the first 1024 bytes of the file. This is consistent with what
other readers do.

• Fix the pkg-config files to list zlib and pcre in Requires.private to better support static linking using
pkg-config.

3.0.2: September 6, 2012

• Bug fix: QPDFWriter::setOutputMemory did not work when not used with
QPDFWriter::setStaticID, which made it pretty much useless. This has been fixed.

• New API call QPDFWriter::setExtraHeaderText inserts additional text near the header of the PDF file.
The intended use case is to insert comments that may be consumed by a downstream application, though
other use cases may exist.

3.0.1: August 11, 2012

• Version 3.0.0 included addition of files for pkg-config, but this was not mentioned in the release notes.
The release notes for 3.0.0 were updated to mention this.

• Bug fix: if an object stream ended with a scalar object not followed by space, qpdf would incorrectly report
that it encountered a premature EOF. This bug has been in qpdf since version 2.0.

3.0.0: August 2, 2012

• Acknowledgment: I would like to express gratitude for the contributions of Tobias Hoffmann toward the
release of qpdf version 3.0. He is responsible for most of the implementation and design of the new API
for manipulating pages, and contributed code and ideas for many of the improvements made in version 3.0.
Without his work, this release would certainly not have happened as soon as it did, if at all.

• Non-compatible API changes:

– The method QPDFObjectHandle::replaceStreamData that uses a StreamDataProvider to pro-
vide the stream data no longer takes a length parameter. The parameter was removed since this
provides the user an opportunity to simplify the calling code. This method was introduced in version
2.2. At the time, the length parameter was required in order to ensure that calls to the stream data
provider returned the same length for a specific stream every time they were invoked. In particular,
the linearization code depends on this. Instead, qpdf 3.0 and newer check for that constraint explicitly.
The first time the stream data provider is called for a specific stream, the actual length is saved, and
subsequent calls are required to return the same number of bytes. This means the calling code no
longer has to compute the length in advance, which can be a significant simplification. If your code

115

QPDF, Release 10.6.3

fails to compile because of the extra argument and you don’t want to make other changes to your code,
just omit the argument.

– Many methods take long long instead of other integer types. Most if not all existing code should
compile fine with this change since such parameters had always previously been smaller types. This
change was required to support files larger than two gigabytes in size.

• Support has been added for large files. The test suite verifies support for files larger than 4 gigabytes, and
manual testing has verified support for files larger than 10 gigabytes. Large file support is available for both
32-bit and 64-bit platforms as long as the compiler and underlying platforms support it.

• Support for page selection (splitting and merging PDF files) has been added to the qpdf command-line
tool. See Page Selection.

• The --copy-encryption option have been added to the qpdf command-line tool for copying encryption
parameters from another file.

• New methods have been added to the QPDF object for adding and removing pages. See Adding and Removing
Pages.

• New methods have been added to the QPDF object for copying objects from other PDF files. See Copying
Objects From Other PDF Files

• A new method QPDFObjectHandle::parse has been added for constructing QPDFObjectHandle objects
from a string description.

• Methods have been added to QPDFWriter to allow writing to an already open stdio FILE* addition to
writing to standard output or a named file. Methods have been added to QPDF to be able to process a file
from an already open stdio FILE*. This makes it possible to read and write PDF from secure temporary
files that have been unlinked prior to being fully read or written.

• The QPDF::emptyPDF can be used to allow creation of PDF files from scratch. The example examples/
pdf-create.cc illustrates how it can be used.

• Several methods to take PointerHolder<Buffer> can now also accept std::string arguments.

• Many new convenience methods have been added to the library, most in QPDFObjectHandle. See
ChangeLog for a full list.

• When building on a platform that supports ELF shared libraries (such as Linux), symbol versions are en-
abled by default. They can be disabled by passing --disable-ld-version-script to ./configure.

• The file libqpdf.pc is now installed to support pkg-config.

• Image comparison tests are off by default now since they are not needed to verify a correct build or port of
qpdf. They are needed only when changing the actual PDF output generated by qpdf. You should enable
them if you are making deep changes to qpdf itself. See README.md for details.

• Large file tests are off by default but can be turned on with ./configure or by setting an environment
variable before running the test suite. See README.md for details.

• When qpdf’s test suite fails, failures are not printed to the terminal anymore by default. Instead, find
them in build/qtest.log. For packagers who are building with an autobuilder, you can add the
--enable-show-failed-test-output option to ./configure to restore the old behavior.

2.3.1: December 28, 2011

• Fix thread-safety problem resulting from non-thread-safe use of the PCRE library.

• Made a few minor documentation fixes.

• Add workaround for a bug that appears in some versions of ghostscript to the test suite

• Fix minor build issue for Visual C++ 2010.

116 Chapter 16. Release Notes

QPDF, Release 10.6.3

2.3.0: August 11, 2011

• Bug fix: when preserving existing encryption on encrypted files with cleartext metadata, older qpdf versions
would generate password-protected files with no valid password. This operation now works. This bug only
affected files created by copying existing encryption parameters; explicit encryption with specification of
cleartext metadata worked before and continues to work.

• Enhance QPDFWriter with a new constructor that allows you to delay the specification of the output file.
When using this constructor, you may now call QPDFWriter::setOutputFilename to specify the output
file, or you may use QPDFWriter::setOutputMemory to cause QPDFWriter to write the resulting PDF
file to a memory buffer. You may then use QPDFWriter::getBuffer to retrieve the memory buffer.

• Add new API call QPDF::replaceObject for replacing objects by object ID

• Add new API call QPDF::swapObjects for swapping two objects by object ID

• Add QPDFObjectHandle::getDictAsMap and QPDFObjectHandle::getArrayAsVector to allow re-
trieval of dictionary objects as maps and array objects as vectors.

• Add functions qpdf_get_info_key and qpdf_set_info_key to the C API for manipulating string fields
of the document’s /Info dictionary.

• Add functions qpdf_init_write_memory, qpdf_get_buffer_length, and qpdf_get_buffer to the
C API for writing PDF files to a memory buffer instead of a file.

2.2.4: June 25, 2011

• Fix installation and compilation issues; no functionality changes.

2.2.3: April 30, 2011

• Handle some damaged streams with incorrect characters following the stream keyword.

• Improve handling of inline images when normalizing content streams.

• Enhance error recovery to properly handle files that use object 0 as a regular object, which is specifically
disallowed by the spec.

2.2.2: October 4, 2010

• Add new function qpdf_read_memory to the C API to call QPDF::processMemoryFile. This was an
omission in qpdf 2.2.1.

2.2.1: October 1, 2010

• Add new method QPDF::setOutputStreams to replace std::cout and std::cerr with other streams
for generation of diagnostic messages and error messages. This can be useful for GUIs or other applications
that want to capture any output generated by the library to present to the user in some other way. Note that
QPDF does not write to std::cout (or the specified output stream) except where explicitly mentioned in
QPDF.hh, and that the only use of the error stream is for warnings. Note also that output of warnings is
suppressed when setSuppressWarnings(true) is called.

• Add new method QPDF::processMemoryFile for operating on PDF files that are loaded into memory
rather than in a file on disk.

• Give a warning but otherwise ignore empty PDF objects by treating them as null. Empty object are not
permitted by the PDF specification but have been known to appear in some actual PDF files.

• Handle inline image filter abbreviations when the appear as stream filter abbreviations. The PDF specifi-
cation does not allow use of stream filter abbreviations in this way, but Adobe Reader and some other PDF
readers accept them since they sometimes appear incorrectly in actual PDF files.

• Implement miscellaneous enhancements to PointerHolder and Buffer to support other changes.

2.2.0: August 14, 2010

117

QPDF, Release 10.6.3

• Add new methods to QPDFObjectHandle (newStream and replaceStreamData for creating new streams
and replacing stream data. This makes it possible to perform a wide range of operations that were not
previously possible.

• Add new helper method in QPDFObjectHandle (addPageContents) for appending or prepending new
content streams to a page. This method makes it possible to manipulate content streams without having to
be concerned whether a page’s contents are a single stream or an array of streams.

• Add new method in QPDFObjectHandle: replaceOrRemoveKey, which replaces a dictionary key with a
given value unless the value is null, in which case it removes the key instead.

• Add new method in QPDFObjectHandle: getRawStreamData, which returns the raw (unfiltered) stream
data into a buffer. This complements the getStreamData method, which returns the filtered (uncom-
pressed) stream data and can only be used when the stream’s data is filterable.

• Provide two new examples: pdf-double-page-size and pdf-invert-images that illustrate the newly
added interfaces.

• Fix a memory leak that would cause loss of a few bytes for every object involved in a cycle of object
references. Thanks to Jian Ma for calling my attention to the leak.

2.1.5: April 25, 2010

• Remove restriction of file identifier strings to 16 bytes. This unnecessary restriction was preventing qpdf
from being able to encrypt or decrypt files with identifier strings that were not exactly 16 bytes long. The
specification imposes no such restriction.

2.1.4: April 18, 2010

• Apply the same padding calculation fix from version 2.1.2 to the main cross reference stream as well.

• Since qpdf --check only performs limited checks, clarify the output to make it clear that there still may
be errors that qpdf can’t check. This should make it less surprising to people when another PDF reader is
unable to read a file that qpdf thinks is okay.

2.1.3: March 27, 2010

• Fix bug that could cause a failure when rewriting PDF files that contain object streams with unreferenced
objects that in turn reference indirect scalars.

• Don’t complain about (invalid) AES streams that aren’t a multiple of 16 bytes. Instead, pad them before
decrypting.

2.1.2: January 24, 2010

• Fix bug in padding around first half cross reference stream in linearized files. The bug could cause an
assertion failure when linearizing certain unlucky files.

2.1.1: December 14, 2009

• No changes in functionality; insert missing include in an internal library header file to support gcc 4.4, and
update test suite to ignore broken Adobe Reader installations.

2.1: October 30, 2009

• This is the first version of qpdf to include Windows support. On Windows, it is possible to build a DLL.
Additionally, a partial C-language API has been introduced, which makes it possible to call qpdf functions
from non-C++ environments. I am very grateful to Žarko Gajić (http://zarko-gajic.iz.hr/) for tirelessly
testing numerous pre-release versions of this DLL and providing many excellent suggestions on improving
the interface.

For programming to the C interface, please see the header file qpdf/qpdf-c.h and the example examples/
pdf-linearize.c.

118 Chapter 16. Release Notes

http://zarko-gajic.iz.hr/

QPDF, Release 10.6.3

• Žarko Gajić has written a Delphi wrapper for qpdf, which can be downloaded from qpdf’s download side.
Žarko’s Delphi wrapper is released with the same licensing terms as qpdf itself and comes with this dis-
claimer: “Delphi wrapper unit qpdf.pas created by Žarko Gajić (http://zarko-gajic.iz.hr/). Use at your
own risk and for whatever purpose you want. No support is provided. Sample code is provided.”

• Support has been added for AES encryption and crypt filters. Although qpdf does not presently support
files that use PKI-based encryption, with the addition of AES and crypt filters, qpdf is now be able to open
most encrypted files created with newer versions of Acrobat or other PDF creation software. Note that I
have not been able to get very many files encrypted in this way, so it’s possible there could still be some
cases that qpdf can’t handle. Please report them if you find them.

• Many error messages have been improved to include more information in hopes of making qpdf a more
useful tool for PDF experts to use in manually recovering damaged PDF files.

• Attempt to avoid compressing metadata streams if possible. This is consistent with other PDF creation
applications.

• Provide new command-line options for AES encrypt, cleartext metadata, and setting the minimum and
forced PDF versions of output files.

• Add additional methods to the QPDF object for querying the document’s permissions. Although qpdf does
not enforce these permissions, it does make them available so that applications that use qpdf can enforce
permissions.

• The --check option to qpdf has been extended to include some additional information.

• Non-compatible API changes:

– QPDF’s exception handling mechanism now uses std::logic_error for internal errors and
std::runtime_error for runtime errors in favor of the now removed QEXC classes used in previ-
ous versions. The QEXC exception classes predated the addition of the <stdexcept> header file to
the C++ standard library. Most of the exceptions thrown by the qpdf library itself are still of type
QPDFExc which is now derived from std::runtime_error. Programs that catch an instance of
std::exception and displayed it by calling the what() method will not need to be changed.

– The QPDFExc class now internally represents various fields of the error condition and provides in-
terfaces for querying them. Among the fields is a numeric error code that can help applications act
differently on (a small number of) different error conditions. See QPDFExc.hh for details.

– Warnings can be retrieved from qpdf as instances of QPDFExc instead of strings.

– The nested QPDF::EncryptionData class’s constructor takes an additional argument. This class is
primarily intended to be used by QPDFWriter. There’s not really anything useful an end-user ap-
plication could do with it. It probably shouldn’t really be part of the public interface to begin with.
Likewise, some of the methods for computing internal encryption dictionary parameters have changed
to support /R=4 encryption.

– The method QPDF::getUserPassword has been removed since it didn’t do what people
would think it did. There are now two new methods: QPDF::getPaddedUserPassword and
QPDF::getTrimmedUserPassword. The first one does what the old QPDF::getUserPassword
method used to do, which is to return the password with possible binary padding as specified by the
PDF specification. The second one returns a human-readable password string.

– The enumerated types that used to be nested in QPDFWriter have moved to top-level enumerated types
and are now defined in the file qpdf/Constants.h. This enables them to be shared by both the C and
C++ interfaces.

2.0.6: May 3, 2009

• Do not attempt to uncompress streams that have decode parameters we don’t recognize. Earlier versions of
qpdf would have rejected files with such streams.

119

http://zarko-gajic.iz.hr/

QPDF, Release 10.6.3

2.0.5: March 10, 2009

• Improve error handling in the LZW decoder, and fix a small error introduced in the previous version with
regard to handling full tables. The LZW decoder has been more strongly verified in this release.

2.0.4: February 21, 2009

• Include proper support for LZW streams encoded without the “early code change” flag. Special thanks to
Atom Smasher who reported the problem and provided an input file compressed in this way, which I did
not previously have.

• Implement some improvements to file recovery logic.

2.0.3: February 15, 2009

• Compile cleanly with gcc 4.4.

• Handle strings encoded as UTF-16BE properly.

2.0.2: June 30, 2008

• Update test suite to work properly with a non-bash /bin/sh and with Perl 5.10. No changes were made
to the actual qpdf source code itself for this release.

2.0.1: May 6, 2008

• No changes in functionality or interface. This release includes fixes to the source code so that qpdf compiles
properly and passes its test suite on a broader range of platforms. See ChangeLog in the source distribution
for details.

2.0: April 29, 2008

• First public release.

120 Chapter 16. Release Notes

CHAPTER

SEVENTEEN

ACKNOWLEDGMENTS

QPDF was originally created in 2001 and modified periodically between 2001 and 2005 during my employment at Apex
CoVantage. Upon my departure from Apex, the company graciously allowed me to take ownership of the software and
continue maintaining it as an open source project, a decision for which I am very grateful. I have made considerable
enhancements to it since that time. I feel fortunate to have worked for people who would make such a decision. This
work would not have been possible without their support.

In 2020, I joined Advent Health Partners, which has sponsored some previous QPDF work and generously allows me
to spend some “company time” maintaining QPDF.

121

https://apexcovantage.com/
https://apexcovantage.com/
https://adventhp.com/

QPDF, Release 10.6.3

122 Chapter 17. Acknowledgments

CHAPTER

EIGHTEEN

INDICES

• qpdf-options

123

QPDF, Release 10.6.3

124 Chapter 18. Indices

QPDF COMMAND-LINE OPTIONS

a
--accessibility, 30
--add-attachment, 35
--allow-insecure, 31
--allow-weak-crypto, 18
--annotate, 30
--assemble, 30

c
--check, 38
--check-linearization, 38
--cleartext-metadata, 31
--coalesce-contents, 24
--collate, 25
--completion-bash, 17
--completion-zsh, 17
--compress-streams, 21
--compression-level, 22
--copy-attachments-from, 35
--copy-encryption, 20
--copyright, 17
--creationdate, 36

d
--decode-level, 21
--decrypt, 20
--description, 36
--deterministic-id, 18

e
--empty, 16
--encrypt, 20
--encryption-file-password, 21
--externalize-inline-images, 24
--extract, 30

f
--filename, 36
--filtered-stream-data, 38
--flatten-annotations, 26
--flatten-rotation, 26
--force-R5, 31

--force-V4, 31
--force-version, 24
--form, 30
--from, 34

g
--generate-appearances, 27

h
--help, 17

i
--ignore-xref-streams, 20
--ii-min-bytes, 24
--is-encrypted, 37

j
--job-json-file, 16
--job-json-help, 40
--json, 39
--json-help, 39
--json-key, 39
--json-object, 40

k
--keep-files-open, 18
--keep-files-open-threshold, 19
--keep-inline-images, 28
--key, 36

l
--linearize, 20
--linearize-pass1, 40
--list-attachments, 39

m
--mimetype, 36
--min-version, 24
--moddate, 36
--modify, 30
--modify-other, 30

125

QPDF, Release 10.6.3

n
--newline-before-endstream, 24
--no-original-object-ids, 21
--no-warn, 18
--normalize-content, 22

o
--object-streams, 22
--oi-min-area, 28
--oi-min-height, 28
--oi-min-width, 28
--optimize-images, 28
--overlay, 26

p
--pages, 25
--password, 18
--password-file, 18
--password-is-hex-key, 19
--password-mode, 19
--prefix, 37
--preserve-unreferenced, 23
--preserve-unreferenced-resources, 23
--print, 31
--progress, 18

q
--qdf, 21

r
--raw-stream-data, 38
--recompress-flate, 22
--remove-attachment, 35
--remove-page-labels, 28
--remove-unreferenced-resources, 23
--repeat, 35
--replace, 36
--replace-input, 16
--requires-password, 37
--rotate, 27

s
--show-attachment, 39
--show-crypto, 17
--show-encryption, 38
--show-encryption-key, 38
--show-linearization, 38
--show-npages, 39
--show-object, 38
--show-pages, 39
--show-xref, 38
--split-pages, 25
--static-aes-iv, 40
--static-id, 40

--stream-data, 22
--suppress-password-recovery, 19
--suppress-recovery, 20

t
--to, 34

u
--underlay, 26
--use-aes, 31

v
--verbose, 18
--version, 17

w
--warning-exit-0, 16
--with-images, 39

126 qpdf Command-line Options

	What is QPDF?
	License
	Downloading QPDF
	Building and Installing QPDF
	System Requirements
	Build Instructions
	Building Documentation
	Crypto Providers
	Build Support For Crypto Providers
	Runtime Crypto Provider Selection
	Crypto Provider Information for Developers
	Crypto Provider Design Notes

	Notes for Packagers
	Build Options
	Packaging Documentation
	Documentation Packaging Rationale

	Running qpdf
	Basic Invocation
	Related Options

	Exit Status
	Related Options

	Shell Completion
	Related Options

	Help/Information
	Related Options

	General Options
	Related Options

	Advanced Control Options
	Related Options

	PDF Transformation
	Related Options

	Page Ranges
	PDF Modification
	Related Options

	Encryption
	Related Options

	Page Selection
	Examples
	Limitations

	Overlay and Underlay
	Examples

	Embedded Files/Attachments
	Related Options
	PDF Date Format
	Options for Adding Attachments
	Options for Copying Attachments

	PDF Inspection
	Related Options

	JSON Options
	Related Options

	Options for Testing or Debugging
	Idempotency
	Related Options

	Unicode Passwords

	QDF Mode
	Using the QPDF Library
	Using QPDF from C++
	Using QPDF from other languages
	A Note About Unicode File Names

	Weak Cryptography
	QPDF JSON
	Overview
	JSON Guarantees
	Limitations of JSON Representation
	JSON: Special Considerations

	Design and Library Notes
	Introduction
	Design Goals
	Helper Classes
	Implementation Notes
	Casting Policy
	Encryption
	Random Number Generation
	Adding and Removing Pages
	Reserving Object Numbers
	Copying Objects From Other PDF Files
	Writing PDF Files
	Filtered Streams
	Object Accessor Methods
	Smart Pointers
	Changes in 10.6.0
	Differences between PointerHolder and std::shared_ptr
	Addressing the Differences
	After qpdf 11 is out
	Historical Background

	QPDFJob: a Job-Based Interface
	QPDFJob Design

	Linearization
	Basic Strategy for Linearization
	Preparing For Linearization
	Optimization
	Writing Linearized Files
	Calculating Linearization Data
	Known Issues with Linearization
	Debugging Note

	Object and Cross-Reference Streams
	Object Streams
	Cross-Reference Streams
	Cross-Reference Stream Data

	Implications for Linearized Files
	Implementation Notes

	PDF Encryption
	PDF Encryption Concepts
	PDF Encryption Details
	PDF Security Restrictions
	How qpdf handles security restrictions
	User and Owner Passwords

	Release Notes
	Acknowledgments
	Indices
	qpdf Command-line Options

